Tonight's Sky
Sun
Sun
Moon
Moon
Mercury
Mercury
Venus
Venus
Mars
Mars
Jupiter
Jupiter
Saturn
Saturn

Tonight's Sky — Change location

OR

Searching...

Tonight's Sky — Select location

Tonight's Sky — Enter coordinates

° '
° '

If gravitational waves come from two massive objects orbiting each other, then does the Earth-Moon system create gravitational waves? What frequency would they have?

Chris Mathews, Plano, Texas
RELATED TOPICS: GRAVITATIONAL WAVES
Earth and Moon
The DSCOVR satellite imaged Earth and the Moon together. The gravitational waves they generate are far too faint to detect.
NASA/NOAA
All binary systems — massive bodies orbiting around each other, irrespective of what the bodies are — generate gravitational waves. Roughly speaking, the strength of the gravitational waves depends on the mass of the bodies, the distance from the observer to the binary, and the frequency — or period — of the waves, which is directly related to the orbital period (for a circular orbit, the gravitational wave period is half the orbital period).

If you think about the Earth-Moon system, the first consideration is that the mass is about 20,000,000 times lighter than the black holes that LIGO observed. Without changing anything else, that translates into gravitational waves roughly a trillion times weaker than those LIGO observed.

More importantly, the Moon’s orbital period is 27 days; the period of the gravitational waves generated by its orbital motion around the Earth is 13.5 days. LIGO is only sensitive to gravitational waves with periods between about 0.02 seconds and 0.001 seconds. The gravitational waves from the Earth-Moon system would be well outside the range of periods LIGO can detect.
Shane L. Larson
Research Associate Professor
CIERA, Northwestern University and Adler Planetarium
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter. View our Privacy Policy.

ADVERTISEMENT
ADVERTISEMENT
Apollo_RightRail

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook