Tonight's Sky
Sun
Sun
Moon
Moon
Mercury
Mercury
Venus
Venus
Mars
Mars
Jupiter
Jupiter
Saturn
Saturn

Tonight's Sky — Change location

OR

Searching...

Tonight's Sky — Select location

Tonight's Sky — Enter coordinates

° '
° '

Cosmic mid-life crisis

A new study of 'GEMS' from Hubble and Spitzer reveals cosmic fireworks fizzled out when the universe reached middle age.
Provided by McDonald Observatory, Austin, Texas
One of the many interacting galaxy pairs seen by the GEMS survey with the Hubble Space Telescope.
S. Jogee/UT-Austin/GEMS Collaboration/STScI/NASA
January 18, 2008
We all start to party less around middle age, and new studies by a team led by University of Texas at Austin astronomer Shardha Jogee now finds that the universe, as a whole, is no exception.

According to the current models of galaxy formation, dubbed "hierarchical lambda cold dark matter" models, galaxies built up to their current masses, shapes, and sizes through the successive mergers of less massive protogalaxies made of gas, stars, and dark matter. In the first quarter of the universe's lifespan, the cosmic landscape was dominated by violent galaxy mergers, which could radically transform the shape of a galaxy and convert its gas into stars at an extreme rate. More than half of bright galaxies were indulging in such violent "partying."

New research is showing that all changed when the universe hit middle age. "Our study finds that over the last 7 billion years, after the universe hit its mid-forties, so to speak, it transitioned from a violent merger-driven mode into a quieter mode," Jogee says.

She and her team find that over each billion-year interval, only 10 percent of galaxies are typically involved in strong interactions and mergers.

Jogee's team has analyzed more than 5,000 galaxies imaged by Hubble Space Telescope as part of GEMS, one of the largest-area surveys conducted with Hubble in two filters.
This Hubble image shows another interacting galaxy pair.
S. Jogee/UT-Austin/GEMS Collaboration/STScI/NASA
"With Hubble's spectacular resolution," says Kyle Penner, member of the international GEMS collaboration. "We could discern amazing tell-tale clues of the mergers and interactions, huge tails, warps, ripples, double nuclei, in galaxies billions of light-years away."

"It's been exciting to apply different complementary techniques in this large survey and to sift through the merger history of the universe during this elusive era," says Sarah Miller, member of the international GEMS collaboration.
In addition to estimating the frequency of mergers, Jogee and her colleagues found that contrary to what is commonly assumed, the average star formation rate in these interacting and merging galaxies is only enhanced by a modest factor of two to three compared to that in normal non-interacting galaxies.

"While extreme bursts of star formation, so-called cosmic fireworks, may happen in some galaxy mergers or interactions, they are not the norm in the vast majority of galaxy interactions taking place over the last 7 billion years," Jogee says.

The findings of Jogee's team result from a powerful synergy of data from NASA's Hubble and Spitzer space telescopes. "Mid-infrared observations from the Spitzer Space Telescope, taken by George Rieke of The University of Arizona, were key for tracing hidden star formation, obscured by dust," Jogee says. "The exquisite resolution of the GEMS Hubble data in turn allowed us to identify strongly interacting and merging galaxies at much earlier cosmological times than conventional ground-based telescopes," says team member Daniel McIntosh of the University of Massachusetts, Amherst.

Jogee and her team, in fact, find that only 20 percent of the total cosmic star formation that took place over the last 7 billion years appears to come from strongly interacting and merging galaxies. These results extend the similar trend found for a smaller sample of about 1,500 galaxies over a narrower time interval by fellow team members Christian Wolf from Oxford University and Eric Bell of the Max Planck Institute of Astronomy.

Furthermore, the results reported by Jogee and her team on the modest fraction (about 20 percent) of merger-induced star formation, and the frequency of galaxy mergers over the last 7 billion years, are in remarkably good agreement with prevailing theoretical cold dark matter models of galaxy evolution.

According to team member Rachel Somerville of the Max Planck Institute of Astronomy, "Mergers are thought to be a crucial process in transforming galaxies, causing bursts of star formation, and perhaps even feeding gas to the supermassive black holes lurking in the galaxy's nucleus.

"Although the frequency of mergers predicted by the models agrees quite well with the observed frequency," Somerville says, "these observations can also teach us much more about the effect these violent episodes have on galaxies."

In fact, Jogee says, "Our results raise many additional questions which can only be addressed with next generation facilities. For example, the cosmic star-formation rate is declining in normal galaxies, but it remains unclear what drives this decline. Are galaxies using up their internal cold gas supply, or is the accretion rate of gas from external filaments declining?"
This Hubble image shows one more interacting galaxy pair.
S. Jogee/UT-Austin/GEMS Collaboration/STScI/NASA
Next-generation radio facilities, such as ALMA (the Atacama Large Millimeter/Sub-millimeter Array) will be critical for exploring how the cold gas content of galaxies changes over the last seven billion years, she said.

"Another key thing to note is that some of our results starkly disagree with prevailing hierarchical models of galaxy evolution," Jogee says. According to these models, the frequency of pure disk galaxies or so-called "bulgeless galaxies" is expected to be extremely low, because a past major merger in the life of every galaxy invariably builds a bulge.

Contrary to such predictions, postdoctoral fellow Fabio Barazza, formerly working with Jogee at The University of Texas and now at Geneva Observatory's Ecole Polytechnique Federale de Lausanne, found that about 20 percent of present-day spiral galaxies are bulgeless or disk-dominated, based on the analysis of about 1,000 galaxies from the Sloan Digital Sky Survey.

"We also see striking super-thin bulgeless galaxies in GEMS, at earlier epochs," Jogee says. "We yet have to characterize the frequency and origin of these enigmatic bulgeless galaxies at different epochs, but there is no denying their prevalence in the local universe."

All in all, "We have made important headway in piecing part of the cosmic puzzle of galaxy evolution, but daunting challenges loom ahead for both observers and theorists, " she says.
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
BoxProductcovernov

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook

Loading...