Tonight's Sky
Sun
Sun
Moon
Moon
Mercury
Mercury
Venus
Venus
Mars
Mars
Jupiter
Jupiter
Saturn
Saturn

Tonight's Sky — Change location

OR

Searching...

Tonight's Sky — Select location

Tonight's Sky — Enter coordinates

° '
° '

Huge star has thick belt

Astronomers resolve torus around star in another galaxy.
Provided by ESO, Garching, Germany
WOH G64
This artist's impression shows star WOH G64.
ESO
May 27, 2008
By resolving, for the first time, features of an individual star in a neighboring galaxy, ESO's Very Large Telescope has allowed astronomers to determine that it weighs almost half of what was previously thought, thereby solving the mystery of its existence. The behemoth star is found to be surrounded by a massive and thick torus of gas and dust, and is most likely experiencing unstable, violent mass loss.

WOH G64 is a red supergiant star almost 2,000 times as large as our Sun and is located 163,000 light-years away in the Large Magellanic Cloud, one of the Milky Way's satellite galaxies.

"Previous estimates gave an initial mass of 40 times the mass of the Sun to WOH G64. But this was a real problem as it was way too cold, compared to what theoretical models predict for such a massive star. Its existence couldn't be explained," says Keiichi Ohnaka, who led the work on this object.

New observations, made with ESO's VLT Interferometer, conclude that the gas and dust around the star is arranged in a thick ring, rather than a spherical shell, and the star is thus less hidden than had been assumed. This implies that the object is in fact half as luminous as previously thought, and thus, less massive. The astronomers infer that the star started its life with a mass of 25 solar masses. For such a star, the observed temperature is closer to what one would expect.
Large Magellanic Cloud
This image shows the Large Magellanic Cloud. Highlighted in the smaller box at the top is star WOH G64.
Spitzer Space Telescope
"Still, the characteristics of the star mean that it may be experiencing a very unstable phase accompanied by heavy mass loss," says co-author Markus Wittkowski from ESO. "We estimate that the belt of gas and dust that surrounds it contains between 3 and 9 solar masses, which means that the star has already lost between one tenth and a third of its initial mass."

To reach this conclusion, the team of astronomers used the MIDI instrument to combine the light collected by three pairs of 8.2-m Unit Telescopes of the VLT. This is the first time that MIDI has been used to study an individual star outside our galaxy.

The observations allowed the astronomers to clearly resolve the star. Comparisons with models led them to conclude that the star is surrounded by a gigantic, thick torus, expanding from about 15 stellar radii (or 120 times the distance between the Earth and the Sun) to more than 250 stellar radii.

"Everything is huge about this system. The star itself is so big that it would fill almost all the space between the Sun and the orbit of Saturn," says Ohnaka. "And the torus that surrounds it is perhaps a light-year across! Still, because it is so far away, only the power of interferometry with the VLT could give us a glimpse on this object. "
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
BoxProductcovernov

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook

Loading...