Tonight's Sky
Sun
Sun
Moon
Moon
Mercury
Mercury
Venus
Venus
Mars
Mars
Jupiter
Jupiter
Saturn
Saturn

Tonight's Sky — Change location

OR

Searching...

Tonight's Sky — Select location

Tonight's Sky — Enter coordinates

° '
° '

Spitzer Space Telescope discovers largest ring around Saturn

It would take about one billion Earths stacked together to fill the ring.
Provided by the Jet Propulsion Laboratory, Pasadena, California
Saturn new ring
This artist's conception shows a nearly invisible ring around Saturn - the largest of the giant planet's many rings. It was discovered by NASA's Spitzer Space Telescope. The artist's conception simulates an infrared view of the giant ring. Saturn appears as just a small dot from outside the band of ice and dust. The bulk of the ring material starts about six million kilometers (3.7 million miles) away from the planet and extends outward roughly another 12 million kilometers (7.4 million miles). The ring's diameter is equivalent to roughly 300 Saturns lined up side to side. The inset shows an enlarged image of Saturn, as seen by the W.M. Keck Observatory at Mauna Kea, Hawaii, in infrared light. The ring, stars and wispy clouds are an artist's representation.
NASA/JPL-Caltech/Keck
October 7, 2009
NASA's Spitzer Space Telescope has discovered an enormous ring around Saturn — by far the largest of the giant planet's many rings.

The new belt lies at the far reaches of the Saturnian system, with an orbit tilted 27° from the main ring plane. The bulk of its material starts about 3.7 million miles (6 million kilometers) away from the planet and extends outward roughly another 7.4 million miles (12 million kilometers). One of Saturn's farthest moons, Phoebe, circles within the newfound ring, and is likely the source of its material.

Saturn's newest halo is thick, too — its vertical height is about 20 times the diameter of the planet. It would take about one billion Earths stacked together to fill the ring.

"This is one super-sized ring," said Anne Verbiscer, an astronomer at the University of Virginia, Charlottesville. "If you could see the ring, it would span the width of two full Moons' worth of sky, one on either side of Saturn." Verbiscer, Douglas Hamilton of the University of Maryland, College Park, and Michael Skrutskie of the University of Virginia, Charlottesville, are authors of a paper about the discovery.

The ring itself is tenuous, made up of a thin array of ice and dust particles. Spitzer's infrared eyes were able to spot the glow of the band's cool dust. The telescope, launched in 2003, is currently 66 million miles (107 million km) from Earth in orbit around the Sun.

The discovery may help solve an age-old riddle of one of Saturn's moons. Iapetus has a strange appearance — one side is bright and the other is really dark — in a pattern that resembles the yin-yang symbol. The astronomer Giovanni Cassini first spotted the moon in 1671, and years later figured out it has a dark side, now named Cassini Regio in his honor.

Saturn's newest addition could explain how Cassini Regio came to be. The ring is circling in the same direction as Phoebe, while Iapetus, the other rings and most of Saturn's moons are all going the opposite way. According to the scientists, some of the dark and dusty material from the outer ring moves inward toward Iapetus, slamming the icy moon like bugs on a windshield.

"Astronomers have long suspected that there is a connection between Saturn's outer moon Phoebe and the dark material on Iapetus," said Hamilton. "This new ring provides convincing evidence of that relationship."

Verbiscer and her colleagues used Spitzer's longer-wavelength infrared camera, called the multiband imaging photometer, to scan through a patch of sky far from Saturn and a bit inside Phoebe's orbit. The astronomers had a hunch that Phoebe might be circling around in a belt of dust kicked up from its minor collisions with comets — a process similar to that around stars with dusty disks of planetary debris. Sure enough, when the scientists took a first look at their Spitzer data, a band of dust jumped out.

The ring would be difficult to see with visible-light telescopes. Its particles are diffuse and may even extend beyond the bulk of the ring material all the way in to Saturn and all the way out to interplanetary space. The relatively small numbers of particles in the ring wouldn't reflect much visible light, especially out at Saturn where sunlight is weak.

"The particles are so far apart that if you were to stand in the ring, you wouldn't even know it," said Verbiscer.

Spitzer was able to sense the glow of the cool dust, which is only about -316° Fahrenheit (-193° Celsius). Cool objects shine with infrared, or thermal radiation. For example, even a cup of ice cream is blazing with infrared light. "By focusing on the glow of the ring's cool dust, Spitzer made it easy to find," said Verbiscer.
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
BoxProductcovernov

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook

Loading...