Tonight's Sky
Sun
Sun
Moon
Moon
Mercury
Mercury
Venus
Venus
Mars
Mars
Jupiter
Jupiter
Saturn
Saturn

Tonight's Sky — Change location

OR

Searching...

Tonight's Sky — Select location

Tonight's Sky — Enter coordinates

° '
° '

Two dying stars reborn as one

A pair of white dwarfs is on a collision path, and they will merge to create a single, new star.
White dwarfs
CfA astronomers have found a pair of white dwarf stars orbiting each other once every 39 minutes. In a few million years, they will merge and reignite as a helium-burning star. In this artist's conception, the reborn star is shown with a hypothetical world. David A. Aguilar, CfA
White dwarfs are dead stars that pack a Sun’s-worth of matter into an Earth-sized ball. Astronomers have just discovered an amazing pair of white dwarfs whirling around each other once every 39 minutes. This is the shortest-period pair of white dwarfs now known. Moreover, in a few million years, they will collide and merge to create a single star.

“These stars have already lived a full life. When they merge, they’ll essentially be ‘reborn’ and enjoy a second life,” said Mukremin Kilic from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts.

Out of the 100 billion stars in the Milky Way, only a handful of merging white dwarf systems are known to exist. Kilic and his colleagues found more. The latest discovery will be the first of the group to merge and be reborn.

The newly identified binary star, designated SDSS J010657.39-100003.3, is located about 7,800 light-years away in the constellation Cetus. It consists of two white dwarfs — a visible star, and an unseen companion whose presence is betrayed by the visible star’s motion around it. The visible white dwarf weighs about 17 percent as much as the Sun, while the second white dwarf weighs 43 percent as much. Astronomers believe that both are made of helium.

The two white dwarfs orbit each other at a distance of 140,000 miles (225,000 kilometers), less than the distance from Earth to the Moon. They whirl around at speeds of 1 million miles per hour (1.6 million km), completing one orbit in only 39 minutes.

The fate of these stars is already sealed. Because they wheel around so close to each other, the white dwarfs stir the space-time continuum, creating expanding ripples known as gravitational waves. Those waves carry away orbital energy, causing the stars to spiral closer and closer together. In about 37 million years, they will collide and merge.

When some white dwarfs collide, they explode as a supernova. However, to explode, the two combined have to weigh 40 percent more than our Sun. This white dwarf pair isn’t heavy enough to go supernova. Instead, they will experience a second life. The merged remnant will begin fusing helium and shine like a normal star once more. We will witness starlight reborn.

This binary white dwarf was discovered as part of a survey program being conducted with the MMT Observatory on Mount Hopkins, Arizona. The survey has uncovered a dozen previously unknown white dwarf pairs. Half of those are merging and might explode as supernovae in the astronomically near future.

White dwarfs are dead stars that pack a Sun’s-worth of matter into an Earth-sized ball. Astronomers have just discovered an amazing pair of white dwarfs whirling around each other once every 39 minutes. This is the shortest-period pair of white dwarfs now known. Moreover, in a few million years, they will collide and merge to create a single star.

“These stars have already lived a full life. When they merge, they’ll essentially be ‘reborn’ and enjoy a second life,” said Mukremin Kilic from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts.

Out of the 100 billion stars in the Milky Way, only a handful of merging white dwarf systems are known to exist. Kilic and his colleagues found more. The latest discovery will be the first of the group to merge and be reborn.

The newly identified binary star, designated SDSS J010657.39-100003.3, is located about 7,800 light-years away in the constellation Cetus. It consists of two white dwarfs — a visible star, and an unseen companion whose presence is betrayed by the visible star’s motion around it. The visible white dwarf weighs about 17 percent as much as the Sun, while the second white dwarf weighs 43 percent as much. Astronomers believe that both are made of helium.

The two white dwarfs orbit each other at a distance of 140,000 miles (225,000 kilometers), less than the distance from Earth to the Moon. They whirl around at speeds of 1 million miles per hour (1.6 million km), completing one orbit in only 39 minutes.

The fate of these stars is already sealed. Because they wheel around so close to each other, the white dwarfs stir the space-time continuum, creating expanding ripples known as gravitational waves. Those waves carry away orbital energy, causing the stars to spiral closer and closer together. In about 37 million years, they will collide and merge.

When some white dwarfs collide, they explode as a supernova. However, to explode, the two combined have to weigh 40 percent more than our Sun. This white dwarf pair isn’t heavy enough to go supernova. Instead, they will experience a second life. The merged remnant will begin fusing helium and shine like a normal star once more. We will witness starlight reborn.

This binary white dwarf was discovered as part of a survey program being conducted with the MMT Observatory on Mount Hopkins, Arizona. The survey has uncovered a dozen previously unknown white dwarf pairs. Half of those are merging and might explode as supernovae in the astronomically near future.

0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
BoxProductcovernov

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook

Loading...