Tonight's Sky
Sun
Sun
Moon
Moon
Mercury
Mercury
Venus
Venus
Mars
Mars
Jupiter
Jupiter
Saturn
Saturn

Tonight's Sky — Change location

OR

Searching...

Tonight's Sky — Select location

Tonight's Sky — Enter coordinates

° '
° '

Mars crater shows evidence for climate evolution

Images of a remarkable crater show evidence that the planet underwent significant fluctuations in its climate due to changes in its rotation axis.
DanielsonKalocsacraters1
High-Resolution Stereo Camera (HRSC) nadir and color channel data taken June 19 2011 by ESA’s Mars Express have been combined to form a natural-color view of the Danielson and Kalocsa craters and their environment in the Arabia Terra region. Centered at around 7°N and 353°E, this image has a ground resolution of about 26m per pixel. The image shows the yardangs bisected by the darker dune field in Danielson crater. Credit: ESA/DLR/FU Berlin (G. Neukum)
The European Space Agency’s (ESA) Mars Express has provided images of a remarkable crater on Mars that may show evidence that the planet underwent significant periodic fluctuations in its climate due to changes in its rotation axis.

On June 19, 2011, Mars Express pointed its high-resolution stereo camera at the Arabia Terra region of Mars, imaging the Danielson and Kalocsa craters.

Danielson Crater is named after the late George E. Danielson, who was instrumental in the development of many spacecraft cameras flown to Mars. Seen to the right (north) in the image, it is the larger crater, roughly 37 miles (60 kilometers) across.

Kalocsa Crater lies in the center of the image and is smaller, about 21 miles (33km) in diameter and about a mile shallower than Danielson. It is named after a town in Hungary famed for its astronomical observatory.
Danielsoncrater2
This computer-generated perspective view was created using data obtained from the High-Resolution Stereo Camera (HRSC) on ESA’s Mars Express. Centered at around 7°N and 353°E, this image has a ground resolution of about 26m per pixel. A part of Danielson crater dominates this view with the detailed relief of the yardangs being interrupted by the 19-mile-long (30 kilometers) field of dark dunes. The uniform thickness in the alternating sedimentary layers provides evidence for the theory that periodic changes in the climate of Mars occurred, possibly due to changes in the planet’s rotation axis. Credit: ESA/DLR/FU Berlin (G. Neukum)
Danielson Crater, like many in the Arabia Terra region, is filled with layered sediments, which, in this instance, have been heavily eroded over time. Within the crater are peculiarly layered buttes, known as yardangs. Yardangs are streamlined hills carved from bedrock or any consolidated or semi-consolidated material by abrasive dust and sand particles carried in the wind. They are seen on Earth in desert regions, with notable examples in North Africa, Central Asia, and Arizona in the United States.
DanielsonKalocsacraters3
Danielson and Kalocsa craters are seen here in broader context. The smaller rectangle shows the region covered in this ESA Mars Express HRSC image release, which covers part of Arabia Terra. Credit: NASA/MGS/MOLA Science Team
In the case of Danielson Crater, scientists believe that water cemented sediments, possibly from an ancient deep groundwater reservoir, before they were eroded.

The orientation of the yardangs leads scientists to theorize that strong north-northeasterly winds (from the lower right in the image) both deposited the original sediments and then caused their subsequent erosion in a later drier period of martian history.

A 19-mile-long (30km) field of darker dunes can be seen bisecting the yardangs and is thought to have formed at a later epoch.

DanielsonKalocsacraters4
This color-coded plan view is based on a digital terrain model of the region, from which the topography of the landscape can be derived. Note the strong view in color relief of the ejecta blanket surrounding Kalocsa crater, and the marked change in depth where the darker dune region bisects the center of Danielson crater. Centered at around 7°N and 353°E, this image has a ground resolution of about 26m per pixel. Credit: ESA/DLR/FU Berlin (G. Neukum)
The crater floor of Danielson shows evidence for a series of alternating sedimentary layers with roughly uniform thickness and separation.

Some scientists believe that this indicates periodic fluctuations in the climate of Mars, triggered by regular changes in the planet’s axis of rotation. The different layers would have been laid down during different epochs.

By marked contrast, Kalocsa Crater shows a completely different topography. Here, no layered sediments are seen. This is thought to be due to the higher altitude of its floor, with the crater not tapping in to the suspected underlying ancient water reservoir.

Another hypothesis is that this crater is younger than its neighbor, created when water was not present anymore.

Anaglyph3Dimage5
Danielson and Kalocsa craters in the Arabia Terra region of Mars were imaged during orbit June 19, 2011, by ESA’s Mars Express High-Resolution Stereo Camera (HRSC). Centered at around 7°N and 353°E, this anaglyph 3D image has a ground resolution of about 26m per pixel. Data from HRSC’s nadir channel and one stereo channel are combined to produce this 3D image that can be viewed using stereoscopic glasses with red–green or red–blue filters. This anaglyph image best shows the sedimentary layering within Danielson crater. Credit: ESA/DLR/FU Berlin (G. Neukum)
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
BoxProductcovernov

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook

Loading...