The findings, made with the W. M. Keck Observatory, offer tantalizing clues about how iron, carbon, and other elements key to human life originally formed. But the size and weight of Segue 2, as the star body is called, are its most extraordinary aspects.
“Finding a galaxy as tiny as Segue 2 is like discovering an elephant smaller than a mouse,” said James Bullock from UC-Irvine. Astronomers have been searching for years for this type of dwarf galaxy, long predicted to be swarming around the Milky Way. Their inability to find any, he said, “has been a major puzzle, suggesting that perhaps our theoretical understanding of structure formation in the universe was flawed in a serious way.”
Segue 2’s presence as a satellite of our home galaxy could be “a tip-of-the-iceberg observation, with perhaps thousands more very low-mass systems orbiting just beyond our ability to detect them,” Bullock said.
“It’s definitely a galaxy, not a star cluster,” said Evan Kirby also from UC-Irvine. He explained that the stars are held together by a globule called a dark matter halo. Without this acting as galactic glue, the star body wouldn’t qualify as a galaxy.
Segue 2, discovered in 2009 as part of the massive Sloan Digital Sky Survey, is one of the faintest known galaxies, with light output just 900 times that of the Sun. That’s minuscule compared to the Milky Way, which shines 20 billion times brighter. But despite its tiny size, researchers using different tools originally thought Segue 2 was far denser.
“Keck Observatory operates the only telescopes in the world powerful enough to have made this observation,” Kirby said of the twin 10-meter telescopes housed on the summit of Mauna Kea in Hawaii. He determined the upper weight range of 25 of the major stars in the galaxy and found that it weighs at least 10 times less than previously estimated.