Tonight's Sky
Sun
Sun
Moon
Moon
Mercury
Mercury
Venus
Venus
Mars
Mars
Jupiter
Jupiter
Saturn
Saturn

Tonight's Sky — Change location

OR

Searching...

Tonight's Sky — Select location

Tonight's Sky — Enter coordinates

° '
° '

The Spitzer and WISE telescopes find close cold neighbor of Sun

The telescopes have discovered what appears to be the coldest brown dwarf known.
RELATED TOPICS: BROWN DWARFS | SPITZER | WISE | STARS
Artist's concept of the coldest known brown dwarf
This artist's conception shows the object named WISE J085510.83-071442.5, the coldest known brown dwarf. Brown dwarfs are dim star-like bodies that lack the mass to burn nuclear fuel as stars do.
Penn State University/NASA/JPL-Caltech
NASA's Wide-field Infrared Survey Explorer (WISE) and Spitzer Space Telescope have discovered what appears to be the coldest "brown dwarf" known — a dim star-like body that surprisingly is as frosty as Earth's North Pole.

Images from the space telescopes also pinpointed the object's distance to 7.2 light-years away, earning it the title for fourth closest system to our Sun. The closest system, a trio of stars, is Alpha Centauri at about 4 light-years away.

"It's very exciting to discover a new neighbor of our solar system that is so close," said Kevin Luhman from Pennsylvania State University, University Park. "And given its extreme temperature, it should tell us a lot about the atmospheres of planets, which often have similarly cold temperatures."

Brown dwarfs start their lives like stars, as collapsing balls of gas, but they lack the mass to burn nuclear fuel and radiate starlight. The newfound coldest brown dwarf is named WISE J085510.83-071442.5. It has a chilly temperature between –54° and 9° Fahrenheit (–48° to –13° Celsius). Previous record-holders for coldest brown dwarfs, also found by WISE and Spitzer, were about room temperature.

WISE was able to spot the rare object because it surveyed the entire sky twice in infrared light, observing some areas up to three times. Cool objects like brown dwarfs can be invisible when viewed by visible-light telescopes, but their thermal glow, even if feeble, stands out in infrared light. In addition, the closer a body, the more it appears to move in images taken months apart. Airplanes are a good example of this effect: A closer low-flying plane will appear to fly overhead more rapidly than a high-flying one.

"This object appeared to move really fast in the WISE data," said Luhman. "That told us it was something special."

After noticing the fast motion of WISE J085510.83-071442.5 in March 2013, Luhman spent time analyzing additional images taken with Spitzer and the Gemini South Telescope on Cerro Pachon in Chile. Spitzer's infrared observations helped determine the frosty temperature of the brown dwarf. Combined detections from WISE and Spitzer, taken from different positions around the Sun, enabled the measurement of its distance through the parallax effect. This is the same principle that explains why your finger, when held out right in front of you, appears to jump from side to side when you alternate left- and right-eye views.

"It is remarkable that even after many decades of studying the sky, we still do not have a complete inventory of the Sun's nearest neighbors," said Michael Werner from NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. "This exciting new result demonstrates the power of exploring the universe using new tools, such as the infrared eyes of WISE and Spitzer."

WISE J085510.83-071442.5 is estimated to be three to 10 times the mass of Jupiter. With such a low mass, it could be a gas giant similar to Jupiter that was ejected from its star system. But scientists estimate it is probably a brown dwarf rather than a planet since brown dwarfs are known to be fairly common. If so, it is one of the least massive brown dwarfs known.

In March 2013, Luhman's analysis of the images from WISE uncovered a pair of much warmer brown dwarfs at a distance of 6.5 light-years, making that system the third closest to the Sun. His search for rapidly moving bodies also demonstrated that the outer solar system probably does not contain a large undiscovered planet, which has been referred to as "Planet X" or "Nemesis."
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
BoxProductcovernov

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook

Loading...