Can you imagine the sky in five million years?

Now you don’t have to — Gaia has the answer.
By | Published: April 13, 2017 | Last updated on May 18, 2023
5millionyrs

In five million years, the sky will look a little different. The constellations will be unrecognizable, and many of the stars we can see today will have moved significantly.

ESA/Gaia/DPAC

Have you ever wondered what it would be like to stare up at the sky millions of years from today? Would things look exactly the same, or would the sky be totally unrecognizable? Wonder no longer — the European Space Agency (ESA) has just released a video answering that exact question.

Since July 2014, ESA’s Gaia mission has been charting the positions of stars in the Milky Way with higher accuracy than ever before. Its goal is to create a three-dimensional map of our galaxy, which is uniquely challenging because we’re trying to make a map from inside the galaxy, rather than being able to take a step back and view it from outside.

With such precise stellar positions, however, comes something else: stellar motions. The stars seem perpetually fixed in the sky — sure, they rise and set, and change throughout the year as we go around the Sun, but they always form the same patterns. A significant percentage of the constellations most of us know are those derived, after all, by the Greeks just a little under 2,000 years ago. So, of course, it’s natural to assume that the stars just don’t move, because they’ve looked pretty much the same for thousands of years.

But thousands of years is but an eyeblink in the lifetime of a galaxy, and the notion that the stars don’t change positions is false. The stars do move, largely in bulk as they rotate around the center of the Milky Way, but sometimes they zip off in random directions dictated by the conditions of their formation or past interactions. This latter effect is exacerbated by perspective — the closer a star is to us, the more it will appear to move. This perspective effect is also essentially how Gaia measures stellar positions so accurately, using a technique called parallax that causes nearby stars to shift against the background as Earth orbits the Sun.

But largely, from our perspective, the stars are just so far away that even though they’re moving at hundreds of kilometers per second, they seem pretty fixed to the casual observer. Now, though, ESA has released a video containing 2,057,050 stars that have been measured well enough to predict where they are and where they’re going in the future. The overall motion of a star from our point of view against the background of extremely far away stars is called proper motion, and that’s the basis for the stellar motions in this video. Using the projected proper motions of the stars in the Gaia catalog, the result is a fast-forwarded trip through time that ends with the sky as it would appear from Earth in 5 million years. Each frame in the video represents the passage of 750 years.

 

 

Copyright: ESA/Gaia/DPAC

 

 

There are a few key takeaway points from this video. At first, very little appears to happen, but that’s an illusion. Consider the constellations. They’re two-dimensional projections on a three-dimensional sky, which means that although the stars form a picture, virtually none of the stars in a given constellation are at the same distance from us. In the video, you can spot Orion on the far right, just below the bright plane of the galaxy. The Big Dipper (technically an asterism, not a constellation) appears in the upper left, high above the galaxy’s plane.

When you hit play, the constellations are quickly distorted beyond all recognition within about 100,000 years — literally just a few frames into the video. That’s because the stars nearer to us appear to move significantly, while those farther away don’t appear to move as much. None of the stars move in tandem, so the patterns are torn apart. So while our current constellations may last for thousands more years, between ten and a hundred thousand years from now, astronomers will need to come up with some new patterns.

Next, keep in mind that this video has some limitations. The first frame seems to show intricate structure and even stripes in the plane of the Milky Way, but those are actually just artificial data artifacts in areas where Gaia hasn’t measured the positions of stars (or hasn’t measured them accurately enough to predict a believable proper motion). Those artifacts are washed out pretty quickly, though, as closer stars move into the areas where less data exists.

Some dark areas, though, are clouds of interstellar dust, which block the light from stars sitting behind them. Those stars aren’t visible today, so the video doesn’t include the “new” stars we might see popping out from behind the clouds as the millennia scroll by. The clouds themselves can also move, which similarly isn’t taken into account here. The motion of these clouds over time would basically change the detailed structure of the Milky Way we see when we look up in the sky, like subtly shifting the stripes on a tiger’s back.

Finally, the stars themselves aren’t eternal. Because it takes time for light to travel across space, you may wonder if the stars you’re seeing in the sky are even really there. For the most part, the answer is yes, simply because stars live so long compared to humans (or human civilization), that the chances of one disappearing in a human lifetime are pretty small. But, if you wait a few hundred thousand years, that won’t be true — that’s when the bright red star in Orion’s shoulder, Betelgeuse, is expected to go supernova. We’ll notice about 600 years later (give or take a few hundred years, because the distance to Betelgeuse is fairly hard to pin down), when the star grows very bright, then dims away past naked-eye visibility. Orion’s really going to start falling apart then, because the bright star that marks one of his knees, Rigel, will go out similarly relatively soon after.

So keep in mind that although this video carries the stars through the next five million years, not all of the stars you see will make it that long. Some will disappear, and new ones might become visible. Regardless of the changes that occur, the sky is changing — but with the data we currently possess, we can now take a peek at what the far future holds in store.

SOURCE: Blastr /  ESA.