A
AAVSO (American Association of Variable Star Observers), 10:57
Abell 1656 (Coma Cluster of Galaxies), 6:57
Abell 1758 (galaxy cluster), 12:74
Abell S0636 (Antlia Cluster), 12:71
abiogenesis, 8:16
ACEAP (Astronomy in Chile Educator Ambassadors Program), 4:28–31
active galactic nuclei (AGN)
 See also black holes
 clouds of obscuring dust, 10:13
 dusty torus around, 6:21
 need to revise model used to classify, 2:19
Adler Planetarium, 6:45
AE Aurigae (variable star), 1:53
AL (Astronomical League), 10:58
ALMA. See Atacama Large Millimeter/submillimeter Array (ALMA)
ALPHA experiment, 1:24–25
Alpha Scorpii (Antares) (star), 1:72
ALPO (Association of Lunar and Planetary Observers), 10:56
amateur astronomy
 changing lives of students, 5:16
 exoplanets discovered through, 9:11
 organizations for, 10:56–60
 #Popscope, 10:64
American Association of Variable Star Observers (AAVSO), 10:57
American Meteor Society (AMS), 10:57
Andromeda (constellation), observations within, 10:68
Andromeda Galaxy (M31)
 consumption of M32, 11:18
 mass of, 6:19
Ant Nebula, 9:11
Antares (Alpha Scorpii) (star), 1:72
antimatter
 high number of positrons in near-Earth space, 3:12
 lightning strikes and, 3:11
 trapping antihydrogen for study, 1:24–25
Antique Telescope Society (ATS), 10:58
Antlia Cluster (Abell S0636), 12:71
Apollo missions
 Apollo 7 mission, 50th anniversary, 10:10–11
 Apollo 8 mission, interview with Jim Lovell, 12:28–35
 Apollo 8 mission, orbits of Moon, 12:14
 Apollo 11 mission, digitizing recordings from, 4:19
 Apollo 12 mission, struck by lightning, 11:16
Arecibo Observatory, 6:15
ARIEL space telescope, 7:11
Arp 78 (NGC 772) (spiral galaxy), 4:73
ARTS supercomputer, 5:15
ASP (Astronomical Society of the Pacific), 10:58
Association of Lunar and Planetary Observers (ALPO), 10:56
asterisms, created by John Davis, 8:66. See also names of specific asterisms
asteroid belt, KBO originating in, 9:14
Asteroid Touring Nanosat Fleet, 1:14
asteroids
See also names of specific asteroids
binary pair, 1:17
Chicxulub asteroid and crater, 6:15
entering Earth’s atmosphere, 10:13, 11:9
future missions to, 1:14
image of asteroid trails, 3:74
influence of dark matter on Earth’s extinction events, 4:22–27
interstellar, 9:10
near-Earth, 2:17, 6:15
organic material on Mars delivered by, 7:10
preservation of early molecules on, 6:15
resembling a skull, 4:17
Trojan, 6:28–35
using nuclear weapons on, 7:9
water from surviving impact, 8:11
astroimaging
equipment and techniques, 5:62–65
nightscapes, 4:50–55
profile of astroimager, 11:30–35, 12:52–57
QHYCCD 128C COLDMOS camera, 6:64–65
RunCam Night Eagle video camera, 5:66–67
Sigma 20mm f/1.4 DG HSM Art lens, 7:60–61
astronauts
Alan Bean, 10:13
Donald Peterson, 10:13
exposure to vacuum of space, 2:8
gardening by, 2:15
James Reilly, 6:15
Jim Lovell, 12:28–35
life expectancy on various planets without spacesuits, 5:21
long-term effects of radiation exposure, 4:10
Peggy Whitson, 10:15
Richard “Dick” Gordon, 3:11
sequencing DNA in space, 5:13
Twins Study (Scott and Mark Kelly), 3:11
weightlessness and body temperature, 5:13
Astronomers Without Borders (AWB), 10:59
Astronomical League (AL), 10:58
Astronomical Society of the Pacific (ASP), 10:58
astronomy
big surveys, 5:30–35
challenge of observing dim objects, 9:12
chasing dramatic sky events throughout life, 3:8
crowdsourcing, 5:34–35
deep-sky observations in November, 11:44–53
deep-sky observations of nearby objects, 12:44–47
direction of spin and orbits, 6:14
fear associated with astronomical phenomena, 10:14
learning from wilderness observation techniques, 11:66
music influenced and inspired by, 1:46–51
observing dwarf objects, 5:14
overestimating height of objects in sky, 3:16
pattern recognition and, 8:64
poll regarding US as exploration leader, 10:13
simultaneously observing multiple astronomical targets within the same star field, 8:11
top ten stories of, 8:22–35, 44–61
top ten stories of 2017, 1:20–29
Universal Time, 5:70
urban, 10:64
Astronomy Day, 4:70
Astronomy in Chile Educator Ambassadors Program (ACEAP), 4:28–31
Astronomy magazine
 Star Products, 11:44–61
tour of Chicago scientific sites, 6:44–51
Atacama Large Millimeter/submillimeter Array (ALMA)
 aging of Sun, 3:7
carbon star with surrounding shell of material, 1:17
ATS (Antique Telescope Society), 10:58
Auriga (constellation), observations within, 1:52–55
aurorae
 on Jupiter, 1:12
 pulsating, 6:15
 on rogue planet, 12:13
AWB (Astronomers Without Borders), 10:59

B
B Cassiopeiae (SN 1572). See Tycho supernova remnant
Baby (Soul) Nebula (IC 1848), 1:73, 3:70
Barnard 8 (dark nebula), 12:72
Barnard 9 (dark nebula), 12:72
Barnard 11 (dark nebula), 12:72
Barnard 33 (Horsehead Nebula), 1:8, 2:7, 11:70
Barnard’s Loop, 11:70
barred spiral galaxies. See names of specific barred spiral galaxies
Bean, Alan, 10:13
Bee-Zed (2015 BZ509) (interstellar asteroid), 9:10
Belt of Venus, 2:18
BepiColombo mission, 1:28, 11:25–29
Berkeley 63 (open cluster), 5:73
Bernes 149 (reflection nebula), 10:72
Big Dipper (constellation), 6:68, 8:73
 image of, 9:73
 movement of component stars over next 100,000 years, 9:10
binary planets, moons versus, 4:34
binary star systems (double stars)
 See also names of specific binary star systems
 in Ant Nebula, 9:11
 companion star of supernova, 9:18
 observational marathon, 3:68, 9:68
 orbit stability and distance between stars within, 1:45
 position angles, 2:19
 stable regions for habitable exoplanets, 10:13
 with white and red dwarfs, 1:14
binocular astronomy
 asterisms created by John Davis, 8:66
 binoculars designed for, 4:64–65
 Coathanger asterism, 9:66
M5 (globular cluster), 5:18
observations within Andromeda, 10:68
observations within Big Dipper, 6:68
observations within Canis Major, 1:68
observations within Cassiopeia constellation, 12:64
observations within Leo, 4:68
observations within Scorpius, 7:66
star clusters in winter, 2:66
star clusters within Monoceros, 3:67

black holes
binary systems of supermassive, 1:16, 2:17
collisions in outskirts of galaxies, 12:11
dusty torus around, 6:21
farthest supermassive, 4:12
fastest growing, 9:11
gas bubbles emitted from, 5:21
within gas cloud, 1:12
globular clusters containing inactive, 5:19
globular clusters containing merged, 8:11
gravitational waves emitted by mergers of, 3:13, 8:14, 19
jets emanating from, 5:44
low-mass stars surrounding, 4:13
orbiting Sgr A*, 8:13
overview of discoveries regarding, 8:27–29
as possible source of energetic particles, 5:15
predicting collisions between, 6:21
probing limits of relativity through observations of, 7:20–31
sizes of, 1:16
tearing apart stars, 7:9, 10:13
tidal disruption events (TDEs), 10:13
ultracompact dwarf galaxy containing, 12:13
wandering supermassive, 8:17
winds affecting star formation, 4:20

Boeing CST-100 Starliner, crew announced for, 12:9

Bose-Einstein condensates, 12:11

brown dwarfs
 clearing of atmosphere, 7:11
 energy jets, 3:44
 largest population discovered, 5:15
 plans to study, 5:17

C

CAESAR (Comet Astrobiology Exploration Sample Return) mission, 4:17

Caldwell 49 (Rosette Nebula), 6:17
California Nebula (NGC 1499), 5:12
Callisto (moon of Jupiter), number of craters on, 12:10
Canadian Hydrogen Intensity Mapping Experiment (CHIME) radio telescope, 1:12, 12:14
Canis Major (constellation), observations within, 1:68
Canopus (star), 7:10
carbon, nanodiamonds as source of microwaves, 10:9
carbon stars, shell of material surrounding, 1:17

Cassini spacecraft
 end of mission, 1:26
 Huygens spaceprobe, 3:48–54
 instrumentation of, 3:46–47
moons studied by, 3:28–35
overview of mission, 1:13, 3:7, 20–27
Cassiopeia (constellation), observations within, 12:64
Cassiopeia A (supernova remnant), 4:8, 5:13
Cat’s Paw Nebula (NGC 6334), 2:70–71
Cederblad 111 (reflection nebula), 4:73
Celestron CGX equatorial mount, 3:64–65
centaur, rings around, 2:17
Centaurus A (NGC 5128) (elliptical galaxy), 6:11
Cepheid variable stars, Leavitt Law, 5:13
Ceres (dwarf planet)
bright spots on, 4:8
Dawn mission’s lowest and final orbit, 10:13
Dawn mission’s permanent orbit, 2:7
observing, 5:14
similarities to Earth, 3:11
Cerro Tololo Inter-American Observatory, 2:71
Chandra X-ray Observatory
binary supermassive black holes, 2:17
image of Crab Nebula, 7:13
isolating members of star cluster, 9:13
Chandrayaan-2 spacecraft
completion of, 3:13
delayed launch, 12:11
Chaple’s Arc (Cygnus Fairy Ring), 12:72
Charon (moon of Pluto)
first officially named features on, 8:9
global map published, 11:11
Chelyabinsk meteorite, 6:17
Chixulub asteroid and crater, 6:15, 17
CHIME (Canadian Hydrogen Intensity Mapping Experiment) radio telescope, 1:12, 12:14
circumstellar disks
ring structure within, 5:12
Tabby’s Star, 5:13
citizen science, Zooniverse, 10:26–35
CK Vulpeculae (variable star), 12:11
CLASS B1152+199 (quasar), 1:12
climate change and global warming
cooling Earth by injecting salt into troposphere, 7:11
sea level rise, 6:19
CMB (cosmic microwave background), 8:44–46
CO-0.40-0.22 (gas cloud), 1:12
Coathanger (asterism), 9:66
Cocoon Galaxy (NGC 4490), 2:74
Coma Berenices (asterism), observing galaxies in, 6:52–57
Coma Cluster of Galaxies (Abell 1656), 6:57
Comet 41P/Tuttle-Giacobini-Kresak, 2:15
Comet 46P/Wirtanen, 5:13
Comet 67P/Churyumov-Gerasimenko
composition of, 5:13
dust jet, 3:17
formation of, 7:11
Comet Astrobiology Exploration Sample Return (CAESAR) mission, 4:17
Comet C/2016 R2 (PANSTARRS), 6:72, 7:72
Comet C/2017 K2 (PANSTARRS), 2:12
Comet C/2017 S3 (PANSTARRS), 12:70
comets
 See also names of specific comets
 composition of, 5:13
 evidence of cyclical bombardment, 9:71
 farthest active, 2:12
 organic material on Mars delivered by, 7:10
 transiting exocomet, 3:13

constellations
 See also names of specific constellations
 appearance of from other planets, 12:69
 time spent by Mars in, 6:19
 time spent by Uranus in, 2:12
 Copernicus Crater (feature on Moon), 9:73
 cosmic inflation, 8:33–35
 cosmic microwave background (CMB), 8:44–46
 cosmic rays
 emitted by binary star system, 11:11, 12:16
 supermassive black holes as possible source of, 5:15
 Cosmic Snake (gravitationally lensed galaxy), 3:14
 cosmic web, 5:46–51, 8:20
 cosmology, confirmation of current cosmological model, 11:16
 Crab Nebula (M1), 7:13
 craters, number of on moons of Jupiter, 12:10. See also names of specific craters
 Cressida (moon of Uranus), 1:13
 CubeSats, 8:11, 9:15
 Curiosity rover
 evidence of methane and organics, 10:16
 new drilling technique, 9:9
 Planet-Encircling Dust Event, 10:15
 Cygnus (constellation), observations within, 7:54–59
 Cygnus Fairy Ring (Chaple’s Arc), 12:72

D
 dark energy
 galaxy formation in presence of stronger, 9:11
 overview of, 8:50–52
 dark matter
 cosmic web, 5:46–51, 8:20
 effect of on observable universe, 11:12
 fluorescent, 4:20
 galaxy without, 8:10
 influence of on Earth’s extinction events, 4:22–27
 influence of on galaxy clusters, 4:20
 oldest Milky Way stars as tracers for, 6:15
 orbit of satellite galaxies and, 6:11
 plotting cosmic ray electrons and positrons, 4:13
 proposed detector, 7:11
 dark nebulae
 image of, 2:72–73
 viewing stars behind, 1:45
 dark stars, 10:18–25
 Davis, John, 8:66
 Dawn spacecraft
 See also Ceres (dwarf planet)
 lowest and final orbit, 10:13
permanent orbit, 2:7, 11:9
de Vaucouleurs system, 4:15
Deep Space Gateway, 4:17
Deimos (moon of Mars)
 formation of via impact, 8:11
 solar storms, 2:15
Desdimona (moon of Uranus), 1:13
Discovery Channel Telescope, EXtreme PREcision Spectrometer (EXPRES), 7:17
Double Cross (asterism), 4:68
double stars. See binary star systems (double stars); names of specific binary star systems
Dragonfly mission, 4:17
dwarf galaxies
 See also names of specific dwarf galaxies
 black hole in, 12:13
 oxygen-starved, 2:15
dwarf planets, origin of meteorites containing water and organic compounds, 5:12. See also names of specific dwarf planets

E
Earth
 accretion of material after formation of Moon, 4:19
 amount of water present before formation of Moon, 8:11
 analysis by OSIRIS-REx, 8:20
 apparent size of Sun from, 6:70
 asteroid enters atmosphere of, 10:13
 axial tilt of, 8:10
 brightness of as seen from Mars, 12:13
 brightness of as seen from Mercury, 11:10
 composition of, 1:18
 cooling by injecting salt into troposphere, 7:11
 escape velocity needed to leave, 7:13
 image of from CubeSat, 9:15
 influence of dark matter on extinction events, 4:22–27
 influence of supernovae on evolution of life, 4:44–49
 interplanetary dust in atmosphere of, 10:13
 Kármán line, 11:10
 lightning strikes and antimatter, 3:11
 likelihood of reversal of magnetic field, 9:11
 mapping unreachable areas of the Himalayas, 10:9
 mass of represented by water, 3:11
 ozone hole, 5:19
 periodically breaking and reconnecting of magnetic field, 9:18
 relative orbital speed of, 10:16
 sea level rise, 6:20
 size of largest storms on, 9:17
 swifter rotation of ancient Earth, 10:13
 tides, 1:44
EC53 (star), 3:11
eclipses
 lunar, 6:72, 7:72, 8:71
 solar, 1:18, 27, 2:68, 3:11, 45, 9:32–35
E-ELT (European Extremely Large Telescope), 5:13
El Gordo (galaxy cluster), 5:19
electrons, shape of, 3:10
elliptical galaxies, 1:18, 4:14, 7:17. See also names of specific elliptical galaxies
emergence, 7:15
emission nebulae. See names of specific emission nebulae

Enceladus (moon of Saturn)
- organic molecules on, 11:18
- study of plume activity on, 1:13
- equivalence principle, 4:12, 11:10

ESA (European Space Agency). See names of specific spacecraft and missions

Eta Carinae (binary star system), 11:11, 12:16

Europa (moon of Jupiter)
- lakes on Earth as analogs of lake on, 8:11
- number of craters on, 12:10
- plate tectonics, 4:13
- porous surface of, 5:21
- study of plume activity on, 1:13
- venting water through shell, 9:11

European Extremely Large Telescope (E-ELT), 5:13

European Space Agency (ESA). See names of specific spacecraft and missions

excitonium, 4:17

ExoMars Rover
- first image from orbit, 9:18
- Mars Organic Molecule Analyzer (MOMA), 9:10

exoplanets. See exoplanets (exoplanets)

Explore Scientific 12-inch Truss Tube Dobsonian, 1:60–61

EXPRES (EXtreme PREcision Spectrometer), Discovery Channel Telescope, 7:17

extragalactic planets, possible discovery of through microlensing, 6:17

extrasolar planets (exoplanets)
See also names of specific exoplanets
- counterclockwise orbits, 10:70–71
- detecting seasonal biological activity, 9:11
- discovered by amateur astronomers, 9:11
- discovered through transits, 8:69
- discovered with artificial intelligence, 4:13
- discovery of new, 3:11
- ESPRESSO instrument, 4:21
- helium in atmosphere of, 9:13
- hot Saturns, 9:15
- hottest known, 11:18
- importance of water to habitability of, 4:12
- Jupiter-sized orbiting red dwarf, 3:19
- largest known, 12:68–69
- light-trapping atmosphere, 1:8
- machine learning to determine habitability of, 8:14
- magnetic fields of, 12:13
- maintaining atmosphere, 3:45
- moons orbiting, 1:30–35
- number discovered by constellation, 10:12
- orbiting Tau Ceti, 5:20
- overview of discoveries regarding, 8:53–55
- patterns and order in extrasolar planetary systems, 5:15
- period of, and iron content of parent star, 5:13
- possibility of habitable orbiting double and triple star systems, 10:13
- possibility of within globular clusters, 3:44
- potentially habitable, 3:12
- rapid orbits of, 3:45
- ring systems, 1:30–35
- rogue, 6:17
- search for, by Texas observatories, 3:55–59
seven Earth-sized planets in system, 1:28
sterilized by X-ray flares from red dwarfs, 8:11
super-Earths, 2:12
titanium and iron in atmosphere of, 12:11
titanium oxide in atmosphere of hot Jupiter, 1:18
transit observed from SOFIA jet, 2:12
ultra-hot Jupiters, 12:17
water on, 6:22–27, 12:11

extraterrestrial life

collisions of space dust and organic molecules, 3:11
detecting seasonal biological activity on exoplanets, 9:11
effects of on planet’s spin, 5:13
importance of water, 4:12
possible reaction to discovery of, 6:15
search for viruses, 5:13
searching Mars for signs of, 6:15
suggestion that evolution of is common, 4:14, 5:8

F

fast radio bursts (FRBs)

ARTS supercomputer, 5:15
CHIME radio telescope, 12:14
frequency of, 1:13
influence of strong magnetic fields, 5:19
overview of, 2:20–25
pinpointing source of, 1:27
ruling out sources of, 2:15
fast-evolving luminous transients (FELTs), 8:13
Fermilab, 6:48–49
Field Museum, 6:46–47
fireballs, 1:70
Fish Head Nebula (IC 1795), 2:72, 5:73, 10:72
Flame Nebula (NGC 2024), 11:70
Flaming Star Nebula (IC 405), 1:53–54, 6:73
Focusing Optics X-ray Solar Imager (FOXSI), 2:17
Fornax LighTrack II mount, 2:62–63
14 Aurigae (double star), 1:53
40 Eridani B (white dwarf), 1:14
FOXSI (Focusing Optics X-ray Solar Imager), 2:17
FRB 121102 (fast radio burst), 1:27, 5:19
FRBs. See fast radio bursts (FRBs)

G

G007.47+00.05 (star forming region), 2:12
Gaia spacecraft, star catalog, 8:19
Galactic Dark Horse (dark nebula), 7:71
galaxies

See also names of specific galaxies; names of specific types of galaxies
alignment of, 5:46–51
classification of, 4:14–15, 8:19
formation of, 7:17
formation of in presence of stronger dark energy, 9:11
growing with age, 8:9
machine learning for classification of, 8:19
measuring rotational speed of, 6:71
merger of, 3:11, 8:13, 21
newly discovered early galaxies, 8:14
observing faint, 10:44–51
observing in Coma Berenices, 6:52–57
observing in spring, 4:59–63
regular spin of disk-like, 7:19
rotation speed and shape of, 1:13
stagnant, 7:13
without dark matter, 8:10
galaxy clusters
See also names of specific galaxy clusters
alignment of, 5:46–51
observing effects of dark matter, 4:20
Gamma Leonis (binary star system), 5:55
gamma rays
catalog of high-energy sources, 8:11
at center of Milky Way, 7:19
from gravitational wave events, 11:11
lightning strikes and, 3:11
supermassive black holes as possible source of, 5:15
gamma-ray bursts (GRBs)
dedicated to Stephen Hawking, 7:11
detection of gravitational waves, 1:29
 Ganymede (moon of Jupiter), 12:10
Geminga (pulsar), 3:12
Geminid meteors, 5:72, 6:73
Giant Magellan Telescope (GMT), 9:13, 12:13
Global-scale Observations of the Limb and Disk (GOLD) satellite, 6:11
globular clusters
See also names of specific globular clusters
age of, 10:12
containing “second-generation” black holes, 8:11
distance between stars within, 3:44
motion of pulsars within, 1:17
motion of stars relative to each other within, 1:44–45
possibility of planets within, 3:44
stability of, 9:70–71
supermassive stars and chemical makeup of, 10:16
why not considered galaxies, 3:44
glycine, formation of, 8:10
GMT (Giant Magellan Telescope), 9:13, 12:13
GOLD (Global-scale Observations of the Limb and Disk) satellite, 6:11
Google AI, 4:13
GRACE-FO (Gravity Recovery and Climate Experiment Follow-On) mission, 3:17, 9:14
Grand Tack model, 5:25–27
gravitational flexing, 10:70
gravitational lensing
AI algorithm for spotting candidates, 2:15
finding first stars and black holes through, 8:17
most distant star observed, 8:13
studying galactic magnetic fields, 1:12
gravitational waves
from black hole collisions in outskirts of galaxies, 12:11
Chinese search for gamma rays from, 11:11
detected from black hole merger, 3:13, 14, 8:14, 19
detected from colliding neutron stars, 1:29, 2:10–11, 4:17
different velocities for different frequencies, 5:44–45
first observation of source of, 2:10–11
first three-detector observation of, 2:10
overview of discoveries regarding, 8:59–61

gravity
- augmented reality sandbox for visualizing, 5:15
distance and, 1:10
- equivalence principle, 11:10
- escape velocity, 1:10
- impact velocity, 1:10
- tidal effect, 1:10

Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission, 3:17, 9:14

GRBs. See gamma-ray bursts (GRBs)

Great Dark Spot (feature on Neptune), size of, 9:17

Great Red Spot (feature on Jupiter)
- depth of, 4:21
- size of, 9:17

GW170608 (gravitational wave), 3:14

H

Hamburger Galaxy (NGC 3628), 4:68, 5:56
HAT-P-67 b (exoplanet), 12:68–69
Haumea (dwarf planet), 2:17
HAWK-I infrared imager, 11:74
Hawking, Stephen
- GRB dedicated to, 7:11
- remembrance of, 6:12–13

Hayabusa2 spacecraft
- arrival at Ryugu, 12:9
- rendezvous with Ryugu, 11:14

HBH 3 (supernova remnant), 12:11
HD 49798/RX J0648.0–04418 (binary star system), 3:19
HD 69830 (star), 8:17
HD 141569A (star), 5:12
HD 163296 (star), 10:16
Heart Nebula (IC 1805), 1:73, 2:72, 3:70
heavy metals, 4:13
helium, discovery in atmosphere of exoplanet, 9:13
Hercules Cluster (M13), 7:72
Herschel 36 (star), 9:74
Horsehead Nebula (Barnard 33), 1:8, 2:7, 11:70

Hubble Space Telescope (HST)
- asteroid binary pair, 1:17
- detail image of Milky Way’s central bulge, 5:74
- farthest active comet, 2:12
- future of, 10:70
- image of asteroid trails, 3:74
- image quality compared to VLT, 11:14
- images of Saturn and Mars, 12:14
- legacy of, 8:47–49
- “reboot” of Messier catalog, 2:16

Huggins, William, 9:44–53
Huygens spacecraft, overview of mission, 3:48–54
hydrogen
- metallic, 7:68–69
- source of in later-generation stars, 2:35

Hypatia stone, 5:17

I

IAU (International Astronomical Union), 8:17
IC 166 (open cluster), 3:71
IC 405 (Flaming Star Nebula), 1:53–54, 6:73
IC 410 (emission nebula), 1:54, 6:73
IC 417 (emission nebula), 1:54
IC 1296 (galaxy), 3:72
IC 1795 (Fish Head Nebula), 2:72, 5:73, 10:72
IC 1805 (Heart Nebula), 1:73, 2:72, 3:70
IC 1848 (Baby Nebula; Soul Nebula), 1:73, 3:70
IC 2149 (planetary nebula), 1:55, 5:14
IC 2169 (reflection nebula), 5:73
IC 4182 (spiral galaxy), 2:72–73
Icarus (blue supergiant star), 8:13
IceCube neutrino detector, 2:15, 3:14
IceCube-170922A (neutrino), 11:14
IDA (International Dark-Sky Association), 10:60
InSight lander
- landing date for, 8:11
- launch of, 9:14
- new timeline for, 1:28
International Astronomical Union (IAU), 8:17
International Dark-Sky Association (IDA), 10:60
International Occultation Timing Association (IOTA), 10:59
International Space Station (ISS)
- gardening on, 2:15
- microbial community on, 4:17
- study of droughts, 11:11
Io (moon of Jupiter)
- lack of craters on, 12:10
- loss of mass due to volcanic activity, 4:34–35
IOTA (International Occultation Timing Association), 10:59
iPTF14hls (supernova), 3:17
iPTF16geu (supernova), 1:22
iron
- in atmosphere of exoplanet, 12:11
- in stars, effect on period of orbiting planets, 5:13
irregular galaxies, 4:14. See also names of specific irregular galaxies
ISS. See International Space Station (ISS)

J

J1324 (brown dwarf), 7:11
J1342+0928 (quasar), 4:12
James Webb Space Telescope (JWST)
- cryogenic testing, 3:7
- image of, 2:17
- launch delays, 7:9
- plans to study brown dwarfs, 5:17
- study of plume activity on Saturnian moons, 1:13
Juno (asteroid), 11:62
Juno spacecraft
See also Jupiter
depth of Great Red Spot, 4:21
images from, versus those from earlier missions, 8:68
JunoCam instrument, 1:24–25, 8:68
mission extension, 10:13
Jupiter
See also Juno spacecraft; names of moons orbiting
aurorae, 1:12
axial tilt of, 8:10
circle of cyclones at north pole of, 7:15
cloud formation on, 2:34–35
discovery of moons, 11:11
from Earth’s and Sun’s perspectives, 4:19
energetic heavy ions, 4:21
escape velocity needed to leave, 7:13
Great Red Spot, 4:21, 9:17
images of, 6:73, 8:70
life expectancy of visiting astronaut without spacesuit, 5:21
number of craters on moons of, 12:10
number of moons, 11:11
polar cyclones, 2:15
radiation zone, 4:21
relative orbital speed of, 10:16
size of largest storms on, 9:17
JWST. See James Webb Space Telescope (JWST)

K
Karl Jansky Very Large Array, 1:13
Kármán line, 11:10
KBOs (Kuiper Belt objects), 1:13, 2:26–31, 9:14
Keck Observatory, Near-Infrared Echellette Spectrometer, 5:13
KELT-9b (exoplanet), 11:18
Kepler space telescope
running low on fuel, 7:17
supernovae observed by, 8:13
Kepler-90 (planetary system), 4:13
Kepler-90i (exoplanet), 4:13
Kepler-186 (planetary system), 12:16
Kepler-452 (planetary system), 12:16
Kepler-1625b (exoplanet), 4:34
KIC 3542116 (star), 3:13
KIC 8462852. See Tabby’s Star
King 5 (open cluster), 11:72
Kite Cluster (NGC 1664), 1:55, 72
Kronos (star), 2:12
Kuiper Belt objects (KBOs), 1:13, 2:26–31, 9:14

L
Lagoon Nebula (M8), 8:71, 9:73–74
Lalande 21185 (red dwarf), 5:14
Large Magellanic Cloud (LMC)
observations within, 2:32–33
origin of fast-moving star in Milky Way, 9:11
Laser Interferometer Gravitational-wave Observatory (LIGO), 10:9
Laser Interferometer Space Antenna (LISA), 9:9
Leavitt Law, 5:13
lenticular galaxies, 4:14. See also names of specific lenticular galaxies
Leo (constellation)
 binocular observations within, 4:68
 observations within, 5:52–57
Leo I (dwarf spheroidal galaxy), 5:14, 54–55
Leo III (dwarf galaxy), 5:54–55
life, origin of
 See also extraterrestrial life
 abiogenesis, 8:16
 beginning earlier than once thought, 4:14, 5:8
 collisions of space dust and organic molecules, 3:11
 influence of supernovae on, 4:44–49
 possible interstellar origin of DNA, 1:13
light
 Earth’s shadow, 2:18
 light pollution from LEDs, 3:11
 nocturnal animals navigating by starlight, 6:15
 photopic versus scotopic vision, 9:12
 scintillation, 8:69
 stellar aberration, 12:14
LIGO (Laser Interferometer Gravitational-wave Observatory), 10:9
LISA (Laser Interferometer Space Antenna), 9:9
Little Scorpion Cluster (NGC 1342), 4:73
LMC. See Large Magellanic Cloud (LMC)
Lobster Nebula (NGC 6357), 2:70–71, 7:74
Lovell, Jim, 12:28–35
Lowell Observatory, 3:60–63
Lucy mission, overview of, 6:28–35
lunar eclipses, January 2018, 6:72, 7:72, 8:71
Lunar Reconnaissance Orbiter (LRO)
 discovery of SMART-1 crash site, 1:8
 view of solar eclipse from, 1:18
Lynx (constellation), 2:15

M
M1 (Crab Nebula), 7:13
M5 (globular cluster), 2:71, 5:18
M8 (Lagoon Nebula), 8:71, 9:73–74
M13 (Hercules Cluster), 7:72
M20 (Trifid Nebula), 9:73
M22 (globular cluster), 12:72
M24 (nebulosity), 7:18
M31. See Andromeda Galaxy (M31)
M32 (compact elliptical galaxy), 11:18
M37 (open cluster), 1:54
M38 (open cluster), 1:54
M42. See Orion Nebula (M42)
M45. See Pleiades Cluster (M45)
M53 (globular cluster), 6:54, 56
M57 (Ring Nebula), 3:72
M60 (NGC 4649) (elliptical galaxy), 9:57–59
M61 (starburst galaxy), 10:73
M65 (spiral galaxy), 4:68, 5:56
Astronomy Magazine 2018 Index

M66 (spiral galaxy), 4:68, 5:56
M77 (spiral galaxy), 6:21, 73
M78 (reflection nebula), 11:70
M89 (elliptical galaxy), 9:73
M92 (globular cluster), 1:70
M95 (barred spiral galaxy), 4:72, 5:57
M96 (barred spiral galaxy), 5:57
M100 (spiral galaxy), 1:72
M102 (Spindle Galaxy), 6:16
M105 (galaxy), 5:57
MACSJ1206.2-0847 (massive galaxy cluster), 3:14
Magdalena Ridge Observatory Interferometer, 11:18
magnetic fields
 of Earth, 9:11, 18
 of galaxies, 1:12
 influence on fast radio bursts, 5:19
 of neutron stars, 3:14
 of rogue planet, 12:13
 of supernova remnants, 11:11
Magnetospheric Multiscale mission, 9:18
MarCO (Mars Cube One mission), 8:11, 9:15
Mariner 10 mission, 11:22–25
Mars
 See also names of specific missions to
 apparent size and brightness in 2018, 1:14
 atmospheric methane, 5:13
 axial tilt of, 8:10
 development of drones for use on, 3:11
 dust storms, 5:20, 10:15
 escape of gas from, 5:20
 escape velocity needed to leave, 7:13
 evidence of hydrothermal vents, 2:16
 fear associated with, 10:14
 formation of moons via impact, 8:11
 formation of valleys on, 11:11
 frost heave action on, 7:11
 ice deposits on, 5:12
 illusion of canals on, 9:64
 image of with Moon, Jupiter, and Saturn, 8:70
 images of, 9:73, 10:73, 12:14, 72
 images of with Regulus and three solar system objects, 1:73, 2:72, 3:71
 length of time for manned mission to travel to, 6:70–71
 life expectancy of visiting astronaut without spacesuit, 5:21
 methane on, 10:16
 night sky as seen from, 12:13
 number of sunrises witnessed by Opportunity rover, 6:11
 observing during opposition, 5:58–61, 8:12, 18
 organic material delivered by asteroid and comet strikes, 7:10
 overview of missions to, 8:24–26
 percentage of time spent in each zodiacal constellation, 6:19
 possibility of terraforming, 12:9
 recurring slope lineae on, 3:13
 relative orbital speed of, 10:16
 searching for signs of life, 6:15
 seasonal changes in color or contrast on, 2:35
 size of largest storms on, 9:17
solar storm, 2:15
underground lake, 11:11
valleys on, 2:19
water on, 2:19, 4:17, 11:11
Mars 2020 rover
cameras on, 3:17
goals of, 4:8
Mars Helicopter, 9:9
Mars Cube One mission (MarCO), 8:11, 9:15
Mars Helicopter, 9:9
Mars Reconnaissance Orbiter (MRO)
evidence of hydrothermal vents, 2:16
HiWish program, 9:20–31
MASTER Global Robotic Net telescopes, 7:11
Mayrit 1701117 (brown dwarf), 3:44
McDonald Observatory, 7:11
Meade 70mm Astrograph Quadruplet APO Refractor, 12:58–59
MeerKAT radio telescope, 11:9
Melotte 111 (open cluster), 6:53
Mercury
apparent size of Sun from, 6:70
axial tilt of, 8:10
escape velocity needed to leave, 7:13
images of with Regulus and three solar system objects, 1:73, 2:72, 3:71
life expectancy of visiting astronaut without spacesuit, 5:21
missions to, 11:20–29
night sky as seen from, 11:10
overview of, 11:20–29
position during 2018, 3:14
relative orbital speed of, 10:16
view from southern pole, 7:10
water ice at poles of, 1:16
Mercury Planetary Orbiter (MPO) spacecraft, 11:24–25
MESSENGER mission, 11:24–25
Messier catalog
controversy over 110th object, 6:16
Hubble’s “reboot” of, 2:16
Messier objects with NGC prime numbers, 9:59
meteor showers
Geminids, 5:72, 6:73
Perseids, 7:32–35
meteorites
comparative sizes of notable, 6:17
containing water and organic compounds, 5:12
crystals reveal infant Sun’s activity, 12:11
discovery of in Scotland, 4:14
exploded over Michigan in 2018, 6:17
Hypatia stone, 5:17
meteoroids, pressures causing breakup of, 4:17
meteors, 11:72
microlensing, possible discovery of extragalactic planets, 6:17
Milky Way Galaxy
age of stars in central bulge of, 8:21
appearance of as arc in sky, 10:71
collision with dwarf galaxy, 11:9
detail image of central bulge, 5:74
determining mass and diameter of, 10:15
distance required to obtain full image of, 12:69
extragalactic origin of fast-moving star in, 9:11
fastest pulsar in, 1:14
first stars formed in, 3:11
gamma rays at center of, 7:19
images of, 1:72, 7:70–71, 11:72
length of central bar, 4:15
low-mass stars surrounding black hole at center of, 4:13
mapping, 2:12
nocturnal animals navigating by light of, 6:15
oldest stars as tracers for dark matter, 6:15
stars ejected by invading galaxies, 7:15
Mimas (moon of Saturn), 2:15
molecular clouds, 2:72–73
Monkey Head Nebula (NGC 2174), 8:72–73
Monoceros (constellation)
 observations within, 2:60–61
 observing star clusters within, 3:67
Moon (Earth’s)
 amount of water present on Earth before formation of, 8:11
 ancient atmosphere of, 2:15
 Copernicus Crater, 9:73
discovery of SMART-1 crash site, 1:8
eclipses of, 6:72, 7:72, 8:71
escape velocity needed to leave, 7:13
fear associated with, 10:14
Honey Moon experiment, 7:12
ice on, 12:16
image of from CubeSat, 9:15
image of with Mars, Jupiter, and Saturn, 8:70
images of, 2:72–73, 4:73, 5:73, 8:72–73, 10:73, 11:70
images of with Regulus and three solar system objects, 1:73, 2:72, 3:71
lunar halo, 2:71
observing daytime crescent, 4:16
observing features along limb, 12:62
observing features at terminator, 12:48–51
periods when could have sustained life, 11:11
possible lava tubes on, 5:8
presidential policy directive for manned mission, 4:21
public’s penchant for naming Full Moons, 7:12
Rupes Recta (Straight Wall), 7:72
SpaceX’s proposed manned mission, 1:23
tidal effect, 1:10, 44
view of solar eclipse from, 1:18
visualizing Stonehenge-like pattern on, 8:64
moons
 See also names of specific moons
 binary planets versus, 4:34
 comparing Antarctica to icy moons, 2:44–49
MPO (Mercury Planetary Orbiter) spacecraft, 11:24–25
MRO. See Mars Reconnaissance Orbiter (MRO)
MU69 (Kuiper Belt object), 1:13, 2:26–31
Multi Unit Spectroscopic Explorer (MUSE), 2:16
multiple-star systems. See binary star systems (double stars); triple star systems
muons, imaging technique using, 3:14
Musca (star-forming cloud), 9:15
MUSE (Multi Unit Spectroscopic Explorer), 2:16

N
NASA (National Aeronautics and Space Administration)
See also names of specific spacecraft and missions
Advanced Concepts Program, 9:11
cost of new Earth science mission line, 5:17
new administrator and chief scientist, 8:11
nebulae. See names of specific nebulae
Neptune
axial tilt of, 8:10
ecape velocity needed to leave, 7:13
Great Dark Spot, 9:17
life expectancy of visiting astronaut without spacesuit, 5:21
relative orbital speed of, 10:16
size of largest storms on, 9:17
weakening of storm on, 6:15
neutinos
detected before light from supernovae, 12:68
detection of first confirmed extragalactic, 11:14
interactions between, 3:14
supermassive black holes as possible source of, 5:15
Neutron star Interior Composition Explorer (NICER) mission, 9:17
neutron stars
collapse of nonrotating, 5:8
effect on Earth of tablespoonful of, 9:71
gravitational waves detected from collision of, 1:29
magnetic fields of, 3:14
merger of, 4:17
minimum radius of nonrotating, 4:12
protons and properties of, 12:10
size limits of, 11:11
in Small Magellanic Cloud, 8:9
New General Catalogue (NGC), 9:54–59
New Horizons spacecraft
See also Pluto
awakened from hibernation, 1:13
observation of KBOs, 2:26–31
NGC (New General Catalogue), 9:54–59
NGC 157 (barred spiral galaxy), 9:58
NGC 281 (Pacman Nebula), 9:54–55, 57–58
NGC 289 (barred spiral galaxy), 8:70
NGC 457 (Owl Cluster), 9:57–58
NGC 613 (spiral galaxy), 6:15
NGC 688 (open cluster), 5:73
NGC 751 (elliptical galaxy), 9:58
NGC 770 (elliptical galaxy), 4:73
NGC 772 (Arp 78) (spiral galaxy), 4:73
NGC 1052-DF2 (ultra-diffuse galaxy), 8:10
NGC 1055 (barred spiral galaxy), 6:73
NGC 1097 (barred spiral galaxy), 9:56–58
NGC 1277 (galaxy), 7:13
NGC 1342 (Little Scorpion Cluster), 4:73
NGC 1365 (spiral galaxy), 3:72
NGC 1369 (galaxy), 3:72
NGC 1374 (galaxy), 3:72
NGC 1375 (galaxy), 3:72
NGC 1379 (galaxy), 3:72
NGC 1381 (galaxy), 3:72
NGC 1382 (galaxy), 3:72
NGC 1387 (galaxy), 3:72
NGC 1389 (galaxy), 3:72
NGC 1399 (galaxy), 3:72
NGC 1404 (galaxy), 3:72
NGC 1427 (galaxy), 3:72
NGC 1499 (California Nebula), 5:12
NGC 1579 (emission nebula), 9:58
NGC 1664 (Kite Cluster), 1:55, 72
NGC 1857 (star cluster), 1:55
NGC 1893 (star cluster), 1:54
NGC 1931 (emission nebula), 1:54
NGC 1964 (spiral galaxy), 6:74
NGC 1973 (emission nebula), 9:56–58
NGC 1975 (nebula), 9:56–57
NGC 1977 (nebula), 9:56–57
NGC 2024 (Flame Nebula), 11:70
NGC 2070 (Tarantula Nebula), 5:20, 10:9
NGC 2074 (star cluster), 10:9
NGC 2100 (open cluster), 10:9
NGC 2126 (star cluster), 1:55
NGC 2174 (Monkey Head Nebula), 8:72–73
NGC 2208 (galaxy), 1:55
NGC 2237-9 (emission nebula), 9:58
NGC 2281 (open cluster), 1:55
NGC 2301 (galaxy), 1:55
NGC 2903 (spiral galaxy), 9:57–58
NGC 2964 (spiral galaxy), 5:57
NGC 2968 (irregular galaxy), 5:57
NGC 2970 (galaxy), 5:57
NGC 3079 (spiral galaxy), 9:57–58
NGC 3201 (globular cluster), 5:19
NGC 3226 (elliptical galaxy), 5:54–55
NGC 3227 (barred spiral galaxy), 5:54–55
NGC 3256 (galaxy), 10:74
NGC 3344 (barred spiral galaxy), 8:74
NGC 3384 (lenticular galaxy), 5:57
NGC 3389 (spiral galaxy), 5:57, 9:58
NGC 3521 (spiral galaxy), 5:56
NGC 3628 (Hamburger Galaxy), 4:68, 5:56
NGC 4027 (spiral galaxy), 9:57–58
NGC 4051 (Seyfert galaxy), 9:58
NGC 4203 (lenticular galaxy), 6:54
NGC 4245 (galaxy), 6:54
NGC 4251 (lenticular galaxy), 6:54
NGC 4274 (galaxy), 6:54
NGC 4278 (elliptical galaxy), 6:54
NGC 4283 (elliptical galaxy), 6:54
NGC 4314 (galaxy), 6:54
NGC 4448 (galaxy), 6:53
NGC 4490 (Cocoon Galaxy), 2:74
NGC 4494 (elliptical galaxy), 6:55
NGC 4539 (barred spiral galaxy), 6:56
NGC 4559 (spiral galaxy), 6:54–55
NGC 4565 (spiral galaxy), 6:53, 55
NGC 4647 (spiral galaxy), 9:58
NGC 4649 (M60) (elliptical galaxy), 9:57–59
NGC 4651 (Umbrella Galaxy), 6:56–57
NGC 4725 (spiral galaxy), 6:54–56
NGC 4747 (galaxy), 6:56
NGC 4874 (elliptical galaxy), 6:57
NGC 4886 (galaxy), 6:57
NGC 4889 (elliptical galaxy), 6:57
NGC 4898 (galaxy), 6:57
NGC 5053 (globular cluster), 6:54, 56
NGC 5128 (Centaurus A) (elliptical galaxy), 6:11
NGC 5189 (planetary nebula), 9:58
NGC 5897 (globular cluster), 9:57–59
NGC 6231 (star cluster), 9:13
NGC 6240 (merging galaxies), 8:13
NGC 6334 (Cat’s Paw Nebula), 2:70–71
NGC 6357 (Lobster Nebula), 2:70–71, 7:74
NGC 6397 (Silver Medal Cluster), 8:14
NGC 6553 (globular cluster), 9:58
NGC 6559 (star forming region), 4:74
NGC 6603 (open cluster), 7:18
NGC 6709 (open cluster), 9:58
NGC 6726 (reflection nebula), 9:72
NGC 6727 (reflection nebula), 9:72
NGC 6729 (reflection nebula), 9:72
NGC 6781 (planetary nebula), 9:57, 59
NGC 7009 (Saturn Nebula), 2:16
NGC 7027 (planetary nebula), 9:57, 59
NGC 7129 (dwarf nebula), 5:14
NGC 7331 (spiral galaxy), 9:58
NGC 7674 (galaxy), 1:16
NGC 7789 (open cluster), 9:58
NGTS-1b (exoplanet), 3:19
NICER (Neutron star Interior Composition Explorer) mission, 9:17
Nobel Prize, 2017 Physics winners, 2:12

See also names of specific novae; supernovae
brightest extragalactic, 2:15
shock waves amplifying, 1:16

O

observatories
See also names of specific observatories
collaboration between US and Chile, 4:28–31
photographic legacy of Lowell Observatory, 3:60–63
search for exoplanets by, 3:55–59
world’s largest refractors, 3:12

Observatorio del Roque de los Muchachos, 12:70

1I/2017 U1 (interstellar object). See ‘Oumuamua
Oort Cloud, distance between bodies within, 5:45
open clusters, motion of stars relative to each other within, 1:44–45. See also names of specific open clusters
Opportunity rover
 number of sunrises witnessed by, 6:11
 Planet-Encircling Dust Event, 10:15
Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission, 8:20
Orion (constellation), 2:50–55, 8:71
Orion molecular clouds, 1:8, 9:18
Orion Nebula (M42)
 image of, 1:74
 overview, 1:8
 radio image of, 7:19
OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) mission, 8:20
'Oumuamua (1I/2017 U1) (interstellar object), 3:10, 4:8, 7:11, 11:16
Owl Cluster (NGC 457), 9:57–58
oxygen
 discovered in distant galaxy, 9:11
 oxygen-starved dwarf galaxy, 2:15

P
Pacman Nebula (NGC 281), 9:54–55, 57–58
Palomar 2 (globular cluster), 1:55
Palomar Observatory, Zwicky Transient Facility, 3:7
PANSTARRS (Comet C/2016 R2), 6:72, 7:72
PANSTARRS (Comet C/2017 K2), 2:12
PANSTARRS (Comet C/2017 S3), 12:70
Parker Solar Probe, overview of mission, 12:10
Patchick 5 (planetary nebula), 2:71
Peach, Damian, 11:30–35
Pegasus (constellation), observations within, 10:52–55
perception, 2:14
Perseid meteors, 7:32–35
Perseus galaxy cluster, 4:20, 8:10
Peterson, Donald, 10:13
PGC 013230 (galaxy), 3:72
Phi Aurigae (star), 1:54
Phobos (moon of Mars)
 formation of via impact, 8:11
 solar storms, 2:15
 surface temperature map, 2:7
Pi1 Gruis (star), 4:20
Pic du Midi Observatory, 6:58–63
Pismis 24 (star cluster), 7:74
Planck mission, final data release, 11:16
planetary nebulae, double-shelled, 12:9. See also names of specific planetary nebulae
planets
 See also extrasolar planets (exoplanets); names of specific planets
 cloud formation on gas giants, 2:34–35
 definition of word, 5:28–29
 effects of life on spin of, 5:13
 ice as building block for, 2:15
 rogue, 6:17, 12:13
 upper limit for mass of, 5:13
PlaneWave Instruments, 4:56–58
Pleiades Cluster (M45)
 fear associated with, 10:14
images of, 1:71, 5:72, 7:72, 8:71
variable stars, 1:13

Pluto
See also New Horizons spacecraft
chemical makeup of, 10:13
escape velocity needed to leave, 7:13
first officially named features, 1:13
global map published, 11:11
overview of discoveries regarding, 8:56–58
Polaris (star), 1:12, 8:73
#Popscope, 10:64
Project Based Learning, 5:16
protons, neutron stars and, 12:10
protoplanetary disks
 detecting planets in, 10:16
 pushing versus dragging planets, 11:11
Proxima Centauri (star), 6:11
PSR B0656+14 (pulsar), 3:12
PSR J0337+1715 (triple star system), 11:10
PSR J0952-0607 (pulsar), 1:14
pulsars
See also names of specific pulsars
 autonomous navigation of spacecraft guided by, 5:13
 fastest in Milky Way, 1:14
 habitable zone around, 4:17
 high number of positrons in near-Earth space, 3:12
 motion of within globular clusters, 1:17
 shortest-known orbital period of pulsar binary, 9:17
 source of radio waves from, 7:69
 unprecedented detailed observation of, 9:11

Q
QHYCCD 128C COLDMOS camera, 6:64–65
quasars. See names of specific quasars

R
radiation
 LNT hypothesis, 4:10
 radiation hormesis, 4:10
radio astronomy
See also fast radio bursts (FRBs)
 echoes of black hole tearing apart star, 7:9
 formation of earliest stars, 7:14
 MeerKAT radio telescope, 11:9
 Orion Nebula, 7:19
 source of radio waves from pulsars, 7:69
 Square Kilometer Array, 10:13, 11:9
radio galaxies, most distant known, 12:11
RCW 38 (star cluster), 11:74
red dwarfs
 binary star system with white dwarf, 1:14
 sterilization of exoplanets by X-ray flares from, 8:11
reflection nebulae, 2:72–73. See also names of specific reflection nebulae
Regulus (star)
 images of with four solar system objects, 1:73, 2:72, 3:71
observing, 5:54–55
Reilly, James, 6:15
relativity
 equivalence principle, 4:12, 11:10
 observing black holes to probe limits of, 7:20–31
 star passes through gravitational field of Sgr A*, 12:11
 testing as S2 star passes supermassive black hole, 6:19
Ring Nebula (M57), 3:72
ring systems
 of centaurs, 2:17
 of Haumea, 2:17
 of Saturn, 2:15, 4:19, 11:72
rockets
 comparison of, 8:20
 escape velocity needed to leave planets, 7:13
 SpaceX, 7:11, 8:20
Rosetta spacecraft
 See also Comet 67P/Churyumov-Gerasimenko
dust jet spotted by, 3:17
 original target, 5:13
Rosette Nebula (Caldwell 49), 6:17
Ross 128 (star), 3:12
Ross 128b (exoplanet), 3:12
Rossi X-ray Timing Explorer (RXTE), 9:17
RunCam Night Eagle 2 Astro Edition video camera, 5:66–67
Rupes Recta (Straight Wall) (feature on Moon), 7:72
RXJ 1131–1231 (quasar), 6:17
RXTE (Rossi X-ray Timing Explorer), 9:17
Ryugu (asteroid)
 arrival of Hayabusa2, 12:9
 rendezvous with Hayabusa2, 11:14
RZ Piscium (star), 4:20

S
S2 (star), 6:19, 12:11
Sagittarius A* (Sgr A*) (black hole)
 campaign to image, 5:17
 low-mass stars surrounding, 4:13
 radio image of, 11:9
 star passes through gravitational field of, 12:11
 stellar-mass black holes orbiting, 8:13
 testing relativity as S2 star passes, 6:19
SAS (Society for Astronomical Sciences), 10:60
satellites, optical illusion of weaving, 6:20. See also names of specific satellites
Saturn
 See also Cassini spacecraft; names of moons orbiting
 axial tilt of, 8:10
 escape velocity needed to leave, 7:13
 image of with Moon, Mars, and Jupiter, 8:70
 images of, 12:14, 72
 life expectancy of visiting astronaut without spacesuit, 5:21
 moons of, 3:28–35
 moons of, heated by gravitational flexing, 10:70
 overview of Cassini mission, 1:13, 3:7, 20–27
 relative orbital speed of, 10:16
ring system, 2:15, 4:19
Seeliger effect, 11:72
size of largest storms on, 9:17
Saturn Nebula (NGC 7009), 2:16
Scholz’s star, 7:11
science
craving for certainty, 3:18
emergence, 7:16
ignorance and apathy regarding, 4:10
as impersonal, but intellectually violent, 9:16
modern scientific model versus medieval model of universe, 6:18
pandering to public’s taste for anti-science, 11:64
perception and, 2:14
publication and peer review process, 10:66
social media and students’ argumentation of theory, 1:17
theory versus Great Deceiverism, 4:18
word choice and definitions, 5:28–29
scintillation, 8:69
Scorpius (constellation), 7:66
Sculptor Dwarf Galaxy, 4:13
SDSS J1354+1327 (galaxy), 5:21
Serpent’s Sailboat (asterism), 5:18
17 Comae Berenices (star), 6:55
Sgr A*. See Sagittarius A* (Sgr A*) (black hole)
Sharpless 2-101 (Tulip Nebula), 3:71
Sharpless 2-126 (emission nebula), 1:71
Sharpless 2-173 (emission nebula), 4:72
Sharpless 2–235 (molecular clouds), 1:55
Sharpless 2–235A and B (nebulae), 1:55
Sigma 20mm f/1.4 DG HSM Art lens, 7:60–61
Silver Medal Cluster (NGC 6397), 8:14
SIMP J01365663+0933473 (exoplanet), 12:13
Sirius (star), 8:71
SKA (Square Kilometer Array), 10:13, 11:9
Sloan Digital Sky Survey, funding for, 3:11
Small Magellanic Cloud (SMC)
gas of Magellanic Stream originating in, 7:10
identifying X-ray source, 8:9
nova, 2:15
radio image of, 5:8
SMART-1 (satellite), crash site, 1:8
SMCN 201610a (nova), 2:15
SN 1572 (B Cassiopeiae). See Tycho supernova remnant
SN 1987A (supernova), 11:11
SN 2001ig (supernova), 9:18
SN 2016gkg (supernova), 6:15
Society for Astronomical Sciences (SAS), 10:60
SOFIA (Stratospheric Observatory for Infrared Astronomy), 2:12
solar eclipses
1207 B.C., 3:11
ancient coins commemorating, 9:32–35
August 2017, 1:18, 27, 2:68, 3:45
eighth-grader’s science project, 2:68
movement from west to east, 3:45
solar flares, 1:14
solar prominences, 2:72
solar storms, 2:15
solar system
 escape velocity needed to leave, 7:13
 exploring oceans of with submarines, 7:44–53
 formation of, new insights into, 5:22–27
 formation of, supernovae resulting in, 5:45
 formation of, within bubble, 5:19
 habitable zone around, 12:16
 snow line, 3:11
 strange behavior of objects beyond Neptune, 12:11
 “solar tornadoes,” 8:9
Soul (Baby) Nebula (IC 1848), 1:73, 3:70
spacecraft
 See also names of specific spacecraft
 autonomous navigation guided by pulsars, 5:13
 bacteria surviving on, 11:11
 nuclear fission-powered, 9:11
 number that ended missions on another planet, 1:13
 time delay of communication with, 2:16
SpaceX
 crew announced for Crew Dragon, 12:9
 Falcon Heavy compared to other rockets, 8:20
 proposed manned missions, 1:23, 28
 rocket launch’s effect on GPS, 7:11
spectroscopy, 9:44–53
Spectrum-Roentgen-Gamma (SRG) X-ray satellite, 1:28
Spindle Galaxy (M102), 6:16
spiral galaxies, 4:14, 7:17. See also names of specific spiral galaxies
SPT 2349-56 (merging galaxy group), 8:21
Square Kilometer Array (SKA), 10:13, 11:9
SRG (Spectrum-Roentgen-Gamma) X-ray satellite, 1:28
star clusters
 See also names of specific star clusters
 observations in winter, 2:66
 observing within Monoceros, 3:67
star parties, Astronomy Day, 4:70
star-forming clouds, mapped using sound, 9:15
Starmus Festival, 1:56–59, 62
stars
 See also names of specific stars; names of specific types of stars
 behind dark nebulae, 1:45
 black hole winds and formation of, 4:20
 challenge to idea of pattern of mass distribution, 9:11
 convective cells on surface of, 4:20
 dark, 10:18–25
 devouring planets, 11:11
 first formed in Milky Way, 3:11
 formation of earliest, 7:14
 future North Stars, 1:12
 images of star trails, 1:71, 4:73, 9:72, 10:73
 massive, commonness of, 5:20
 maximum theoretical size of, 7:68
 measuring mass of solitary, 4:17
 most distant observed, 8:13
 new, ultra-compact type of, 7:11
 nocturnal animals navigating by light of, 6:15
percentage of by type, 9:13
percentage of Sun-like, 9:13
scintillation, 8:69
small, compared to Sun, 8:14
snow line, 3:11
source of hydrogen in, 2:35
spectroscopy, 9:44–53
stellar aberration, 12:14
supermassive, and chemical makeup of globular clusters, 10:16
wandering into solar neighborhood, 1:12
stellar aberration, 12:14
STEVE (Strong Thermal Emission Velocity Enhancement) phenomena, 7:9, 10:73, 11:14
Stock 6 (open cluster), 5:73
Stock 8 (star cluster), 1:54
Stock 21 (open cluster), 8:72–73
Straight Wall (Rupes Recta) (feature on Moon), 7:72
Stratospheric Observatory for Infrared Astronomy (SOFIA), 2:12
Strong Thermal Emission Velocity Enhancement (STEVE) phenomena, 7:9, 10:73, 11:14
submarine exploration, 7:44–53
Sun
aging of, 3:7
apparent size of from Mercury, Venus, and Earth, 6:70
composition of, 3:11
crepuscular rays, 12:72
eclipses of, 9:32–35
halos surrounding, 7:64
identifying birth cluster of, 8:11
images of, 1:71, 8:73
measuring surface temperature of, 2:34
meteorite crystals reveal infant activity of, 12:11
microwave emissions during solar cycles, 3:14
nanoflares and temperature of corona, 2:17
Parker Solar Probe, overview of mission, 12:10
small stars compared to, 8:14
snow line, 3:11
solar eclipses, 1:18, 27, 2:68, 3:11, 45
solar flares, 1:14
solar prominences, 2:72
solar storms, 2:15
“solar tornadoes,” 8:9
source of hydrogen in, 2:35
Sun pillars, 8:71
sunspots, 1:66, 71
sunspots
‘black drop’ effect of, 1:66
image of, 1:71
superclusters. See names of specific superclusters
supernovae
See also names of specific supernovae
companion star of, 9:18
fast-evolving luminous transients (FELTs), 8:13
imaging, 6:15
influence of on evolution of life, 4:44–49
magnetic fields of remnants, 11:11
neutrinos detected before light from, 12:68
rebounded shock wave from, 12:11
resulting in solar system formation, 5:45
Type Ia, 1:22
Type IIb stripped-envelope, 9:18
“zombie” star that has exploded twice, 3:17

T
T Tauri stars, disks surrounding, 8:17
Tabby’s Star (KIC 8462852)
circumstellar disk, 5:13
dust surrounding, 2:19, 10:13
Tarantula Nebula (NGC 2070), 5:20, 10:9
Tau Ceti (star), 5:20
Taurus (constellation), 8:71
TDEs (tidal disruption events), 10:13
telescopes
See also names of specific telescopes
atom-thin mirror coatings, 1:13
Celestron CGX equatorial mount, 3:64–65
Explore Scientific 12-inch Truss Tube Dobsonian, 1:60–61
eyepiece field of view, 1:64
Fornax LighTrack II mount, 2:62–63
image of, 3:70
modular, self-assembling space telescope, 9:11
PlaneWave Instruments, 4:56–58
small, 2:56–59
Vixen Optics HR eyepieces, 9:60–61
world’s largest refractors, 3:12
Terzan 5 (globular cluster), 1:17
TESS (Transiting Exoplanet Survey Satellite), 1:28, 8:11
TGSS J1530+1049 (radio galaxy), 12:11
thermodynamics, laws of, 7:11
Thirty Meter Telescope
reinstatement of permit, 2:15
working with Giant Magellan Telescope, 9:13
35 Comae Berenices (triple star), 6:56
tidal disruption events (TDEs), 10:13
Titan (moon of Saturn)
Huygens spaceprobe, 3:48–54
methane storms on, 2:12
possible chemical ingredients for life, 1:22
tides on, 6:70
titanium
in atmosphere of exoplanet, 12:11
titanium oxide in atmosphere of hot Jupiter, 1:18
Tombaugh’s star (TV Corvi) (dwarf nova), 5:14
Transiting Exoplanet Survey Satellite (TESS), 1:28, 8:11
TRAPPIST-1 (red dwarf)
age of, 8:14
seven Earth-sized planets in system, 1:28
watery composition of planets orbiting, 7:12
Triangulum (constellation), observations within, 12:64
Trifid Nebula (M20), 9:73
triple star systems, stable regions for habitable exoplanets, 10:13
Trojan asteroids, Lucy mission, 6:28–35
Tulip Nebula (Sharpless 2-101), 3:71
Tunguska meteor, 6:17
TV Corvi (Tombaugh’s star) (dwarf nova), 5:14
2 Comae Berenices (double star), 6:57
24 Comae Berenices (double star), 6:55, 56
288P (asteroid binary pair), 1:17
2004 EW95 (Kuiper Belt object), 9:14
2015 BZ509 (Bee-Zed) (interstellar asteroid), 9:10
2018 CB (asteroid), 6:15
2018 LA (asteroid), 11:9
TXS 0506+056 (blazar), 11:14
Tycho supernova remnant, 2:7, 4:35

U
U Antliae (carbon star), 1:17
Umbrella Galaxy (NGC 4651), 6:56–57
Universal Time (UT), 5:70
universe
“cosmic dark ages,” 7:69
largest computer-generated slice of a model universe, 7:19
multiverse theory, 12:12
rate of expansion of, 6:15, 8:68
simulation theory (universe as hologram), 12:12
Uranus
axial tilt of, 8:10, 11:11
escape velocity needed to leave, 7:13
hydrogen sulfide in atmosphere of, 8:11
life expectancy of visiting astronaut without spacesuit, 5:21
observing with naked eye, 9:12
relative orbital speed of, 10:16
size of largest storms on, 9:17
time spent in each zodiacal constellation, 2:12
UT (Universal Time), 5:70

V
variable stars, 1:13. See also names of specific variable stars
Venus
all-mechanical rover, 1:8
apparent size of Sun from, 6:70
axial tilt of, 8:10
brightness of as seen from Mars, 12:13
brightness of as seen from Mercury, 11:10
escape velocity needed to leave, 7:13
images of, 4:73, 10:73, 11:70
images of with Regulus and three solar system objects, 1:73, 2:72, 3:71
life expectancy of visiting astronaut without spacesuit, 5:21
position during 2018, 5:17
rarity of transits, 8:69
relative orbital speed of, 10:16
size of largest storms on, 9:17
temperature over time, 4:35
Very Large Array (VLA), 1:72
Very Large Telescope (VLT)
Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO), 4:21, 6:15
Multi Unit Spectroscopic Explorer (MUSE) instrument, 11:14
Very Long Baseline Array (VLBA), 2:12
Vixen Optics HR eyepieces, 9:60–61
VLA (Very Large Array), 1:72
VLBA (Very Long Baseline Array), 2:12
VLT. See Very Large Telescope (VLT)
volcanoes
in Hawaii, imaged from observatory, 9:9
on Io, 4:34–35
on Moon, 2:15
Voyager 1 spaceprobe
course correction, 4:17
overview of mission, 8:30–32
Voyager 2 spaceprobe, overview of mission, 8:30–32
VY Canis Majoris (star), 7:68

W
W43-MM1 (star-forming region), 9:11
Walking Among the Stars virtual reality project, 5:13
warm-hot intergalactic medium (WHIM), 10:12
WASP-12b (exoplanet), 1:8
WASP-19b (exoplanet), 1:18
WASP-39b (exoplanet), 7:11
WASP-96b (exoplanet), 9:15
WASP-107b (exoplanet), 9:13
water
on asteroids, surviving impact, 8:11
on Earth before impact causing formation of Moon, 8:11
on Europa, lakes on Earth serving as analogs of, 8:11
on Europa, venting through shell, 9:11
on exoplanets, 6:22–27, 12:11
ice as building block for planets, 2:15
ice deposits on Mars, 5:12
ice on Moon, 12:16
on Mars, 2:19, 4:17, 11:11
mass of Earth represented by water, 3:11
on Mercury, 1:16
in meteorites, 5:12
origin of, 6:22–27
possibility of extraterrestrial life and, 4:12
sea level rise on Earth, 6:20
snow line, 3:11
tides on Earth, 1:44
on TRAPPIST-1 planets, 7:12
in vacuum of space, 2:15
on WASP-39b, 7:11
weakly interacting massive particles (WIMPs), 4:13
WHIM (warm-hot intergalactic medium), 10:12
white dwarfs
See also names of specific white dwarfs
binary star system with red dwarf, 1:14
brightness and detection of, 9:70
progenitor of Tycho supernova remnant, 2:7
shrinking, 3:19
studying to identify exoplanets with water, 6:22–27
Whitson, Peggy, 10:15
Wilkinson Microwave Anisotropy Probe Wilkinson Microwave Anisotropy Probe, 4:13
WIMPs (weakly interacting massive particles), 4:13
WISE 1029 (star), 6:15

X
Xi Boötis (yellow/orange dwarf star), 5:14
X-ray emissions
 catalog of sources, 12:11
 sterilization of exoplanets by, 8:11
 Z-machine at Sandia National Laboratories, 8:19

Y
Yerkes Observatory, 6:50–51, 7:15

Z
zodiacal light, of solar system versus HD 69830, 8:17
Zooniverse, overview of, 10:26–35
Astronomy Magazine 2018 Index

TITLE

A
All about position angles, 2:19
All objects, even stars, fall the same way, 11:10
ALMA sees a star blow a bubble, 1:17
ALMA spots three newborn planets, 10:16
Andromeda ate the Milky Way’s sibling, 11:18
An ant armed with a laser, 9:11
Apathy Now!, 5:10
Apollo 7 50 years ago, 10:10–11
AR sandbox helps users visualize gravity, 5:15
Around the sky with a small scope, 2:56–59
Artificial intelligence discovers exoplanet, 4:13
As good as it gets, 1:14
Astronomers catch ghost particle from distant galaxy, 11:14
Astronomers identify universe’s missing matter, 10:12
Astronomers see brightest extragalactic nova, 2:15
Astronomers trace a cosmic spiderweb, 8:20
Astronomy Backstage Pass: Chicago, 6:44–51
Astronomy tests Celestron’s CGX mount, 3:64–65
Astronomy tests Meade’s new Astrograph, 12:58–59

B
The beauty of nebulous space, 1:8
A better map of the Milky Way, 2:12
Big city scopes, 10:64
The Big Dipper transformed, 9:10
Binoculars made for the night sky, 4:64–65
Birthing stars makes galaxies swell, 1:18
The ‘black drop’ effect of sunspots, 1:66
Black hole is caught devouring a star, 10:13
Black hole lets out a double burp, 5:21
A black hole’s dusty doughnut, 6:21
Blocking starlight shows disks around young stars, 8:17

C
Call me Steve, 7:9
Capture video with this low-cost camera, 5:66–67
The case of the shrinking white dwarf, 3:19
Cassini probe sends its last regards, 1:13
Cassini unveils Saturn, 3:20–27
Centaurus A contradicts dark matter models, 6:11
Chandra separates old stars from young, 9:13
Chandra updates the Crab Nebula, 7:13
Check out the Big Dipper!, 6:68
A circle of cyclones, 7:15
A citizen science success story, 10:26–35
Clear skies for cooled brown dwarfs, 7:11
Cloudy with a chance of…, 9:17
The Coathanger, 9:66
Comets swarm a distant star, 3:13
Constrained hallucinations, 2:14
Cosmic fire crackers, 2:20–25
Astronomy Magazine Article Title Index

D
Damian Peach images the cosmos, 11:30–35
Dark matter alters autumn, 11:12
Dark matter explains galaxy cluster observations, 4:20
Dark matter’s shadowy effect on Earth, 4:22–27
Dark stars come into the light, 10:18–25
Dark traces, 4:13
Death’s hot/cold touch, 5:21
Decoding the cosmic microwave background, 8:44–46
Demystifying Messier 24, 7:18
A detailed look inside Cassini, 3:46–47
Did the solar system form in a bubble?, 5:19
Discover great galaxies in Coma Berenices, 6:52–57
Disk galaxies spin like clockwork, 7:19
Dissecting a cosmic butterfly, 8:13
Do exoplanets have moons?, 1:30–35
Don’t let the Horsehead get ya, 2:7
The Double Star Ultramarathon, 9:68
Dust storm engulfs Mars, 10:15

E
Early results of NASA’s Twins Study, 3:11
Earth and Ceres: Striking similarities, 11:16
Earth caught on CubeSat camera, 9:15
Earth stops energetic neutrinos, 3:14
Earth’s gravity: A downer?, 1:10
Earth’s ‘shadow bands,’ 2:18
Enceladus on Earth, 2:44–49
Enormous bubbles cover surface of red giant star, 4:20
Entice the masses, 4:70
E.T., phone home, 10:12
Evidence mounts for a dry Mars, 3:13
ExoMars returns its first image from orbit, 9:18
Exoplanets burst onto the scene, 8:53–55
Explore Auriga’s deep-sky wonders, 1:52–55
Explore nearby deep-sky gems, 12:44–47
Explore Scientific’s 12-inch Truss Tube Dobsonian, 1:60–61
Explore the LMC, 2:32–33
Exploring Jupiter’s Trojan asteroids, 6:28–35
Extralunar systems are neater than ours, 5:15

F
Farthest supermassive black hole lies 13 billion light-years away, 4:12
The fastest pulsar in the Milky Way discovered, 1:14
The fear effect, 10:14
Fingerprinting the very first stars, 7:14
First global maps of Pluto and Charon published, 11:11
The first interstellar asteroid, 4:8
The first interstellar immigrant, 9:10
The first observation of a gravitational wave source, 2:10–11
Fornax LighTrack II mount, 2:62–63
FRB resides near a strong magnetic field, 5:19
Free-floating extragalactic planets found, 6:17
Future North Stars, 1:12
Astronomy Magazine 2018 Index

G
Gaia creates detailed star catalog, 8:19
A galaxy without dark matter, 8:10
Giant Magellan Telescope excavation begins, 12:13
Giants fall hard, 10:66
Gifts to the future, 5:16
Gigantic stars aren’t so rare, 5:20
Glimpsing gravitational waves, 8:59–61
Global dust storms on Mars may allow gas to escape, 5:20
A globular cluster’s silent black hole, 5:19
Great Deceiverism 101, 4:18
A great glob under the radar, 5:18
Guide your camera to great shots, 5:62–65

H
A Hathor halo?, 7:64
Heavy metal in the universe, 4:13
Helium found in alien atmosphere, 9:13
The historic flight of Apollo 8, 12:28–35
The Honey Moon experiment, 7:12
Hot Jupiter’s skies contain titanium oxide, 1:18
How big was the Michigan meteorite?, 6:17
How did Mars get its valleys?, 2:19
How do neat piles of boulders form on Mars?, 7:11
How do you build a galaxy?, 7:17
How does the Falcon Heavy stack up against the competition?, 8:20
How fast must a rocket travel to leave each planet?, 7:13
How long does it take to talk to a spacecraft?, 2:16
How many craters on Jupiter’s moons?, 12:10
How much do planets tip?, 8:10
How small is that star?, 8:14
How supernovae have affected life, 4:44–49
How to weigh solitary stars, 4:17
How William Huggins shaped astrophysics, 9:44–53
Hubble highlights solar system gems, 12:14
Hubble precisely measures distance to ancient cluster, 8:14
Hubble spies asteroid pair sporting a tail, 1:17
Hubble spots a supernova survivor, 9:18
Hubble spots farthest active comet, 2:12
Hubble spots farthest star ever seen, 8:13
Hubble’s astounding legacy, 8:47–49
Hunt Orion’s deep-sky gems, 2:50–55

I
I know where, but when?, 5:70
Ice discovered on the Moon’s surface, 12:16
Ideas about star formation are challenged, 9:11
In memoriam: Alan Bean and Donald Peterson, 10:13
In pursuit of exoplanets, 3:55–59
Inflation leaves its mark, 8:33–35
Inside the heart of the Rosette, 6:17
Is radiation beneficial?, 4:10
Is the universe a hologram?, 12:12
Is this stellar pair marathon-worthy?, 3:68
J
Juno charts the Great Red Spot’s depths, 4:21
Juno’s planetary past, 11:62
Jupiter gets tipsy, 4:19
Jupiter’s polar cyclones don’t add up, 2:15

K
Kepler solves a stellar mystery, 8:13
Kepler telescope has only months of fuel left, 7:17

L
Lake of liquid water found on Mars, 11:11
Lava lamp, 9:9
The Leo Trio plus one, 4:68
Leo’s exotic deep-sky gems, 5:52–57
Lessons from the bush, 11:66
Lessons learned, 3:8
Let’s even the score with M102, 6:16
Life in the universe may be common, 5:8
Lunar limb magic, 12:62
A lunar Stonehenge, 8:64

M
Making sausage, 9:16
Making sense of how galaxies are classified, 4:14–15
Map of Orion A shows stellar birthplaces, 9:18
Mars closes in, 8:12
Mars rover detects seasonal surge in methane, finds hidden organics, 10:16
Massive galaxies merged earlier than expected, 8:21
Massive ice deposits found on Mars, 5:12
Massive organic molecules found in Enceladus’ plumes, 11:18
Meandering through Monoceros, 2:60–61
Meet an expert in remote astroimaging, 12:52–57
Mercury in the evening, 3:14
Mercury’s grand view, 11:10
Mercury’s southern exposure, 7:10
Merger madness, 3:14
Messier catalog reboot, 2:16
Methane monsoons, 2:12
Middle ground, 1:12
The Milky Way is larger than we thought, 10:15
The mind’s siren call, 3:18
Minting a celestial memory, 9:32–35
‘Miracle’ work, 11:64
Mission Moon 3-D, 12:18–27
A murmuration of starlings, 7:16
Mysterious ‘winking’ star could be devouring planets, 4:20

N
Narnia fading, 6:18
NASA catches a huge solar flare, 1:14
NASA probe will touch the Sun, 12:10
NASA successfully launches Mars InSight, GRACE-FO missions, 9:14
Neighborhood watch, 1:12
Neptune’s dark storm weakens further, 6:15
Neutron star merger created a cocoon, 4:17
New Horizons explores the Kuiper Belt, 2:26–31
New insights into how the solar system formed, 5:22–27
New model links three types of energetic particles, 5:15
New surveys help calibrate a century-old law, 5:13
Next time you’re in space..., 2:8
A next-generation planet hunt begins, 4:21
An NGC primer, 9:54–59
Nobel prize, 2:12
November’s 50 finest deep-sky objects, 11:44–53

O
Observe deep-sky gems in Cygnus, 7:54–59
Observe Mars at its best, 5:58–61
Observe shadow play on the Moon, 12:48–51
Oddball galaxy stopped growing too soon, 7:13
Oldest fossils suggest life in the universe is common, 4:14
One step at a time, 8:16
An organically grown planet definition, 5:28–29
The other Andromeda, 10:68
*Oumuamua is likely a comet, not an asteroid, 11:16
Our eighth annual Star Products, 11:54–61
Our solar system receives an interstellar visitor, 3:10
Outlying stars traced to our galaxy’s disk, 7:15

P
A pair of CubeSats heads for Mars, 8:11
Party with the Perseids, 7:32–35
The photographic legacy of Lowell’s Great Refractor, 3:60–63
Planet eater, 2:12
Pluto finds its place, 8:56–58
Positron excess may have dark matter origins, 3:12
Predicting supermassive black hole collisions, 6:21
Probing a pyramid, 3:14
Pulsars reveal origin of a globular cluster, 1:17

Q
QHYCCD’s new astrocamera, 6:64–65

R
Radio images reveal a bustling stellar birthplace, 7:19
The real music of the spheres, 1:46–51
Red Planet delight, 12:13
The Red Planet revealed, 8:24–26
Relative speeds of the planets, 10:16
Relativity: Right or wrong?, 7:20–31
Remembering John Davis, 8:66
Remembering Stephen Hawking, 6:12–13
Rethinking water’s role in search for life, 4:12
The return of the Red Planet, 8:18
Revealing Pluto’s first officially named features, 1:13
Ring around the dwarf planet, 2:17
Rosetta spots a cometary dust jet, 3:17
Rubble pile, 12:9

S
Sagittarius A* may have a dozen nomadic siblings, 8:17
Satellite ‘fake out,’ 6:20
Saturn Nebula’s strange structures, 2:16
Saturn’s rings are a recent addition, 4:19
Saturn’s small wonders, 3:28–35
Scorpion treasures, 7:66
Searching for obscurity, 9:12
Secrets of a cosmic snake, 3:14
Secrets of nightscape photography, 4:50–55
See the daytime lunar crescent, 4:16
Seeking the unknown in cosmic data, 5:30–35
72 minutes on Titan, 3:48–54
Sharing the skies above Chile, 4:28–33
Shining light on black holes, 8:27–29
Shocks boost nova brightness, 1:16
Sighting the Queen, 12:66
Sizing up Andromeda, 6:19
Small Magellanic Cloud is losing cosmic fight, 7:10
Snapshots from Starmus, 1:56–59
Snow White and the seven dwarfs, 5:14
Solar system comparison, 12:16
A space spider, 10:9
Spend a night in Pegasus, 10:52–55
Spin cycles, 6:14
Spring’s best & brightest galaxies, 4:59–63
Spying on Sculptor, 4:13
Star clusters in Monoceros, 3:67
A star on Earth, 8:19
Star-forming cloud is mapped with sound, 9:15
Starless planet has a mighty magnetic field, 12:13
Starmus Awards 2017: Stephen Hawking Medals, 1:62
Star’s black hole encounter confirms Einstein’s theory, 12:11
Steady as she goes, 3:14
Stellar disks can form rings without planets, 5:12
Stellar flyby shook up outer solar system, 7:11
Stellar hide-and-seek, 8:8
STEVE the aurora isn’t an aurora, after all, 12:14
The story of PlaneWave, 4:56–58
A successful eclipse adventure, 2:68
Supermassive black holes can form tight pairs, 1:16
Supermassive black holes disrupt their smaller counterparts, 8:14
Stellar flyby, 7:11
A supernova fades away, 12:11
Supernova snapshot is 1 in 10 million, 6:15

T
Take control of a Mars orbiter, 9:20–31
Take your hobby to the next level, 10:56–60
Taking a dim view, 10:44–51
The 10 biggest things in astronomy (introduction), 8:22–23
TESS is on its way to hunt for planets, 8:11
This cold front won’t quit, 8:10
This meteorite’s origin is mysterious, 5:17
This star exploded not once, but twice, 3:17
Three nights at Pic du Midi, 6:58–63
Tipping the scales, 1:16
Top 10 space stories of 2017, 1:20–29
Treasures in Triangulum, 12:64
Turbulence ahead, 1:12

U
Ultra-hot Jupiters have daysides like stars, 12:17
Unexpected nursery, 4:13
Unthinkable Mars, 9:64
Uranus blazes a trail, 2:12

V
Venus at dusk, 5:17
Visualizing a dusty star system, 8:17
VLT challenges Hubble for image quality, 11:14
Voracious black holes lurk in some galaxies, 2:19
Voyage to a world of extremes, 11:20–29
Voyage to the bottom of an alien sea, 7:44–53
Voyager’s Grand Tour, 8:30–32

W
Water worlds in the Milky Way, 6:22–27
We test Sigma’s 20mm lens, 7:60–61
We test Vixen’s HR eyepieces, 9:60–61
Webb Telescope sits for a unique portrait, 2:17
Webb to take on brown dwarfs, 5:17
The weird mystery of dark energy, 8:50–52
What Cassini taught us, 3:7
What did totality look like from the Moon?, 1:18
What fraction of all stars are Sun-like?, 9:13
What is stellar aberration?, 12:14
What’s in a comet?, 5:13
What’s my true field?, 1:64
What’s “overhead”?, 3:16
What’s the Sun made of?, 11:16
When black holes collide, 8:19
Where does water freeze in the solar system?, 3:11
Why do galaxies align?, 5:46–51
Why is the Sun’s corona so hot?, 2:17
Winter star clusters, 2:66
Wonders of the Big Dog, 1:68
The world’s 10 largest refractors, 3:12

X
X-ray satellite is gone, not forgotten, 9:17

Y
Young galaxies may have old magnetic fields, 1:12
AUTHOR

B
Bakich, Michael E.
All about position angles, 2:19
Death’s hot/cold touch, 5:21
Future North Stars, 1:12
Heavy metal in the universe, 4:13
How fast must a rocket travel to leave each planet?, 7:13
How many craters on Jupiter’s moons?, 12:10
How much do planets tip?, 8:10
Hubble’s astounding legacy, 8:47–49
Meandering through Monoceros, 2:60–61
November’s 50 finest deep-sky objects, 11:44–53
Observe Mars at its best, 5:58–61
Party with the Perseids, 7:32–35
Relative speeds of the planets, 10:16
Spend a night in Pegasus, 10:52–55
Voyager’s Grand Tour, 8:30–32
What fraction of all stars are Sun-like?, 9:13
What’s the Sun made of?, 11:16
The world’s 10 largest refractors, 3:12
Becker, Barbara J.
How William Huggins shaped astrophysics, 9:44–53
Berman, Bob
Apathy Now!, 5:10
Dark matter alters autumn, 11:12
Earth’s gravity: A downer?, 1:10
The fear effect, 10:14
The Honey Moon experiment, 7:12
Is radiation beneficial?, 4:10
Is the universe a hologram?, 12:12
Lessons learned, 3:8
Mars closes in, 8:12
Next time you’re in space..., 2:8
Searching for obscurity, 9:12
Spin cycles, 6:14
Betz, Eric
The first observation of a gravitational wave source, 2:10–11
Lake of liquid water found on Mars, 11:11
Mars rover detects seasonal surge in methane, finds hidden organics, 10:16
Brasch, Klaus
The photographic legacy of Lowell’s Great Refractor, 3:60–63

C
Carlson, Erika K.
Black hole is caught devouring a star, 10:13
Carroll, Michael
Enceladus on Earth, 2:44–49
Voyage to the bottom of an alien sea, 7:44–53
Cendes, Yvette
Cosmic fire crackers, 2:20–25
Chaple, Glenn
Around the sky with a small scope, 2:56–59
Big city scopes, 10:64
Demystifying Messier 24, 7:18
The Double Star Ultramarathon, 9:68
Entice the masses, 4:70
I know where, but when?, 5:70
Is this stellar pair marathon-worthy?, 3:68
Juno’s planetary past, 11:62
Let’s even the score with M102, 6:16
The return of the Red Planet, 8:18
A successful eclipse adventure, 2:68
Treasures in Triangulum, 12:64
What’s my true field?, 1:64
Cullen, Stephen G.
 Secrets of nightscape photography, 4:50–55

D
Davis, Joel
 Exploring Jupiter’s Trojan asteroids, 6:28–35
 The real music of the spheres, 1:46–51
Drudis, Josep
 Explore the LMC, 2:32–33

E
Eicher, David J.
 Astronomy Backstage Pass: Chicago, 6:44–51
 The beauty of nebulous space, 1:8
 Don’t let the Horsehead get ya, 2:7
 The first interstellar asteroid, 4:8
 Life in the universe may be common, 5:8
 Mission Moon 3-D, 12:18–27
 Remembering Stephen Hawking, 6:12–13
 Snapshots from Starmus, 1:56–59
 The 10 biggest things in astronomy (introduction), 8:22–23
 What Cassini taught us, 3:7
Emspak, Jesse
 New insights into how the solar system formed, 5:22–27
 Relativity: Right or wrong?, 7:20–31
Evans, Ben
 Voyage to a world of extremes, 11:20–29

G
Goldman, Don
 Explore the LMC, 2:32–33
Goldstein, Alan
 Explore nearby deep-sky gems, 12:44–47
 An NGC primer, 9:54–59

H
Hadhazy, Adam
 Taking a dim view, 10:44–51
Hallas, Tony
 QHYCCD’s new astrocamera, 6:64–65
 The story of PlaneWave, 4:56–58
Hampson, Michelle
Star’s black hole encounter confirms Einstein’s theory, 12:11
Hanson, Mark
Meet an expert in remote astroimaging, 12:52–57
Harrington, Phil
Check out the Big Dipper!, 6:68
The Coathanger, 9:66
A great glob under the radar, 5:18
Hunt Orion’s deep-sky gems, 2:50–55
The Leo Trio plus one, 4:68
Observe shadow play on the Moon, 12:48–51
The other Andromeda, 10:68
Our eighth annual Star Products, 11:54–61
Remembering John Davis, 8:66
Scorpion treasures, 7:66
Sighting the Queen, 12:66
Spring’s best & brightest galaxies, 4:59–63
Star clusters in Monoceros, 3:67
We test Vixen’s HR eyepieces, 9:60–61
Winter star clusters, 2:66
Wonders of the Big Dog, 1:68
Haynes, Korey
Exoplanets burst onto the scene, 8:53–55
72 minutes on Titan, 3:48–54
Hester, Jeff
Constrained hallucinations, 2:14
Giants fall hard, 10:66
Gifts to the future, 5:16
Great Deceiverism 101, 4:18
Making sausage, 9:16
The mind’s siren call, 3:18
‘Miracle’ work, 11:64
A murmuration of starlings, 7:16
Narnia fading, 6:18
One step at a time, 8:16

J
Jakiel, Richard
Minting a celestial memory, 9:32–35
Johnson-Groh, Mara
Dark stars come into the light, 10:18–25
Inflation leaves its mark, 8:33–35
Seeking the unknown in cosmic data, 5:30–35
Jorgenson, Amber
ALMA spots three newborn planets, 10:16
An ant armed with a laser, 9:11
Blocking starlight shows disks around young stars, 8:17
Chandra separates old stars from young, 9:13
Chandra updates the Crab Nebula, 7:13
A circle of cyclones, 7:15
Dissecting a cosmic butterfly, 8:13
Earth and Ceres: Striking similarities, 11:16
Gaia creates detailed star catalog, 8:19
Global dust storms on Mars may allow gas to escape, 5:20
Hubble highlights solar system gems, 12:14
Hubble precisely measures distance to ancient cluster, 8:14
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice discovered on the Moon’s surface</td>
<td>12:16</td>
</tr>
<tr>
<td>Inside the heart of the Rosette</td>
<td>6:17</td>
</tr>
<tr>
<td>Juno charts the Great Red Spot’s depths</td>
<td>4:21</td>
</tr>
<tr>
<td>Kepler telescope has only months of fuel left</td>
<td>7:17</td>
</tr>
<tr>
<td>Map of Orion A shows stellar birthplaces</td>
<td>9:18</td>
</tr>
<tr>
<td>Massive galaxies merged earlier than expected</td>
<td>8:21</td>
</tr>
<tr>
<td>Neptune’s dark storm weakens further</td>
<td>6:15</td>
</tr>
<tr>
<td>Oddball galaxy stopped growing too soon</td>
<td>7:13</td>
</tr>
<tr>
<td>Radio images reveal a bustling stellar birthplace</td>
<td>7:19</td>
</tr>
<tr>
<td>Rubble pile</td>
<td>12:9</td>
</tr>
<tr>
<td>Sagittarius A* may have a dozen nomadic siblings</td>
<td>8:17</td>
</tr>
<tr>
<td>A space spider</td>
<td>10:9</td>
</tr>
<tr>
<td>Stellar hide-and-seek</td>
<td>8:8</td>
</tr>
<tr>
<td>Supermassive black holes disrupt their smaller counterparts</td>
<td>8:14</td>
</tr>
<tr>
<td>Supermassive start</td>
<td>11:9</td>
</tr>
<tr>
<td>A supernova fades away</td>
<td>12:11</td>
</tr>
<tr>
<td>This cold front won’t quit</td>
<td>8:10</td>
</tr>
<tr>
<td>This meteorite’s origin is mysterious</td>
<td>5:17</td>
</tr>
<tr>
<td>Webb to take on brown dwarfs</td>
<td>5:17</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Kiefert, Nicole</td>
<td></td>
</tr>
<tr>
<td>ALMA sees a star blow a bubble</td>
<td>1:17</td>
</tr>
<tr>
<td>Hubble spies asteroid pair sporting a tail</td>
<td>1:17</td>
</tr>
<tr>
<td>What did totality look like from the Moon?</td>
<td>1:18</td>
</tr>
<tr>
<td>Klesman, Alison</td>
<td></td>
</tr>
<tr>
<td>All objects, even stars, fall the same way</td>
<td>11:10</td>
</tr>
<tr>
<td>Apollo 7 50 years ago</td>
<td>10:10–11</td>
</tr>
<tr>
<td>Astronomers catch ghost particle from distant galaxy</td>
<td>11:14</td>
</tr>
<tr>
<td>Astronomers identify universe’s missing matter</td>
<td>10:12</td>
</tr>
<tr>
<td>Astronomers see brightest extragalactic nova</td>
<td>2:15</td>
</tr>
<tr>
<td>Astronomers trace a cosmic spiderweb</td>
<td>8:20</td>
</tr>
<tr>
<td>Black hole lets out a double burp</td>
<td>5:21</td>
</tr>
<tr>
<td>A black hole’s dusty doughnut</td>
<td>6:21</td>
</tr>
<tr>
<td>Call me Steve</td>
<td>7:9</td>
</tr>
<tr>
<td>Centaurus A contradicts dark matter models</td>
<td>6:11</td>
</tr>
<tr>
<td>A citizen science success story</td>
<td>10:26–35</td>
</tr>
<tr>
<td>Clear skies for cooled brown dwarfs</td>
<td>7:11</td>
</tr>
<tr>
<td>Cloudy with a chance of…</td>
<td>9:17</td>
</tr>
<tr>
<td>Dark matter explains galaxy cluster observations</td>
<td>4:20</td>
</tr>
<tr>
<td>Dust storm engulfs Mars</td>
<td>10:15</td>
</tr>
<tr>
<td>Earth caught on CubeSat camera</td>
<td>9:15</td>
</tr>
<tr>
<td>Earth stops energetic neutrinos</td>
<td>3:14</td>
</tr>
<tr>
<td>Evidence mounts for a dry Mars</td>
<td>3:13</td>
</tr>
<tr>
<td>ExoMars returns its first image from orbit</td>
<td>9:18</td>
</tr>
<tr>
<td>Extrasolar systems are neater than ours</td>
<td>5:15</td>
</tr>
<tr>
<td>Farthest supermassive black hole lies 13 billion light-years away</td>
<td>4:12</td>
</tr>
<tr>
<td>First global maps of Pluto and Charon published</td>
<td>11:11</td>
</tr>
<tr>
<td>FRB resides near a strong magnetic field</td>
<td>5:19</td>
</tr>
<tr>
<td>Free-floating extragalactic planets found</td>
<td>6:17</td>
</tr>
<tr>
<td>Giant Magellan Telescope excavation begins</td>
<td>12:13</td>
</tr>
<tr>
<td>How did Mars get its valleys?</td>
<td>2:19</td>
</tr>
<tr>
<td>How do neat piles of boulders form on Mars?</td>
<td>7:11</td>
</tr>
<tr>
<td>How do you build a galaxy?</td>
<td>7:17</td>
</tr>
</tbody>
</table>
How long does it take to talk to a spacecraft?, 2:16
How small is that star?, 8:14
How to weigh solitary stars, 4:17
Ideas about star formation are challenged, 9:11
Jupiter’s polar cyclones don’t add up, 2:15
Kepler solves a stellar mystery, 8:13
Lava lamp, 9:9
Making sense of how galaxies are classified, 4:14–15
Massive organic molecules found in Enceladus’ plumes, 11:18
In memoriam: Alan Bean and Donald Peterson, 10:13
Middle ground, 1:12
The Milky Way is larger than we thought, 10:15
NASA catches a huge solar flare, 1:14
NASA probe will touch the Sun, 12:10
NASA successfully launches Mars InSight, GRACE-FO missions, 9:14
Neutron star merger created a cocoon, 4:17
New model links three types of energetic particles, 5:15
New surveys help calibrate a century-old law, 5:13
A next-generation planet hunt begins, 4:21
Our solar system receives an interstellar visitor, 3:10
A pair of CubeSats heads for Mars, 8:11
Predicting supermassive black hole collisions, 6:21
Pulsars reveal origin of a globular cluster, 1:17
Rethinking water’s role in search for life, 4:12
Revealing Pluto’s first officially named features, 1:13
Saturn’s rings are a recent addition, 4:19
Secrets of a cosmic snake, 3:14
Sharing the skies above Chile, 4:28–33
Shocks boost nova brightness, 1:16
Small Magellanic Cloud is losing cosmic fight, 7:10
Solar system comparison, 12:16
A star on Earth, 8:19
Star-forming cloud is mapped with sound, 9:15
Stellar disks can form rings without planets, 5:12
STEVE the aurora isn’t an aurora, after all, 12:14
TESS is on its way to hunt for planets, 8:11
Tipping the scales, 1:16
Visualizing a dusty star system, 8:17
VLT challenges Hubble for image quality, 11:14
Voracious black holes lurk in some galaxies, 2:19
Webb Telescope sits for a unique portrait, 2:17
What’s in a comet?, 5:13
Where does water freeze in the solar system?, 3:11
X-ray satellite is gone, not forgotten, 9:17

Kruesi, Liz
Cassini unveils Saturn, 3:20–27
Decoding the cosmic microwave background, 8:44–46
Top 10 space stories of 2017, 1:20–29
The weird mystery of dark energy, 8:50–52

L
Lopes, Rosaly
Enceladus on Earth, 2:44–49

M
Astronomy Magazine Article Author Index

May, Brian
 Mission Moon 3-D, 12:18–27
McEwen, Alfred
 Take control of a Mars orbiter, 9:20–31
Melott, Adrian L.
 How supernovae have affected life, 4:44–49

N
Naeye, Robert
 The first observation of a gravitational wave source, 2:10–11
 Glimpsing gravitational waves, 8:59–61
 Our solar system receives an interstellar visitor, 3:10
 Positron excess may have dark matter origins, 3:12

O
O’Meara, Stephen James
 The ‘black drop’ effect of sunspots, 1:66
 Discover great galaxies in Coma Berenices, 6:52–57
 Earth’s ‘shadow bands’, 2:18
 Explore Auriga’s deep-sky wonders, 1:52–55
 A Hathor halo?, 7:64
 Leo’s exotic deep-sky gems, 5:52–57
 Lessons from the bush, 11:66
 Lunar limb magic, 12:62
 A lunar Stonehenge, 8:64
 Observe deep-sky gems in Cygnus, 7:54–59
 Satellite ‘fake out’, 6:20
 See the daytime lunar crescent, 4:16
 Snow White and the seven dwarfs, 5:14
 Unthinkable Mars, 9:64
 What’s “overhead”? , 3:16

P
Parks, Jake
 Andromeda ate the Milky Way’s sibling, 11:18
 AR sandbox helps users visualize gravity, 5:15
 Artificial intelligence discovers exoplanet, 4:13
 A better map of the Milky Way, 2:12
 Birthing stars makes galaxies swell, 1:18
 Black hole is caught devouring a star, 10:13
 The case of the shrinking white dwarf, 3:19
 Dark traces, 4:13
 Did the solar system form in a bubble?, 5:19
 Disk galaxies spin like clockwork, 7:19
 Early results of NASA’s Twins Study, 3:11
 Enormous bubbles cover surface of red giant star, 4:20
 Fingerprinting the very first stars, 7:14
 The first interstellar immigrant, 9:10
 The first observation of a gravitational wave source, 2:10–11
 A galaxy without dark matter, 8:10
 Gigantic stars aren’t so rare, 5:20
 A globular cluster’s silent black hole, 5:19
 Helium found in alien atmosphere, 9:13
 How big was the Michigan meteorite?, 6:17
 How does the Falcon Heavy stack up against the competition?, 8:20
Hubble spots a supernova survivor, 9:18
Hubble spots farthest star ever seen, 8:13
Mars rover detects seasonal surge in methane, finds hidden organics, 10:16
Massive ice deposits found on Mars, 5:12
Merger madness, 3:14
Messier catalog reboot, 2:16
Methane monsoons, 2:12
Mysterious ‘winking’ star could be devouring planets, 4:20
Neighborhood watch, 1:12
Nobel prize, 2:12
Oldest fossils suggest life in the universe is common, 4:14
‘Oumuamua is likely a comet, not an asteroid, 11:16
Planet eater, 2:12
Positron excess may have dark matter origins, 3:12
Probing a pyramid, 3:14
Saturn Nebula’s strange structures, 2:16
Sizing up Andromeda, 6:19
Spying on Sculptor, 4:13
Starless planet has a mighty magnetic field, 12:13
Starmus Awards 2017: Stephen Hawking Medals, 1:62
Star’s black hole encounter confirms Einstein’s theory, 12:11
Steady as she goes, 3:14
Stellar flyby shook up outer solar system, 7:11
Supermassive black holes can form tight pairs, 1:16
Supernova snapshot is 1 in 10 million, 6:15
This star exploded not once, but twice, 3:17
Ultra-hot Jupiters have daysides like stars, 12:17
Unexpected nursery, 4:13
What is stellar aberration?, 12:14
When black holes collide, 8:19
Why is the Sun’s corona so hot?, 2:17
Young galaxies may have old magnetic fields, 1:12
Peach, Damian
Damian Peach images the cosmos, 11:30–35
Three nights at Pic du Midi, 6:58–63

R
Rampino, Michael R.
Dark matter’s shadowy effect on Earth, 4:22–27
Redd, Nola Taylor
Do exoplanets have moons?, 1:30–35
Water worlds in the Milky Way, 6:22–27
Reddy, Francis
Saturn’s small wonders, 3:28–35
Shining light on black holes, 8:27–29
Reeves, Robert
In pursuit of exoplanets, 3:55–59
Reynolds, Mike
Explore Scientific’s 12-inch Truss Tube Dobsonian, 1:60–61
Guide your camera to great shots, 5:62–65
Take your hobby to the next level, 10:56–60
Runyon, Kirby D.
An organically grown planet definition, 5:28–29

S
Scharping, Nathaniel
 Massive organic molecules found in Enceladus’ plumes, 11:18
Shubinski, Raymond
 Binoculars made for the night sky, 4:64–65
Stern, S. Alan
 New Horizons explores the Kuiper Belt, 2:26–31
 An organically grown planet definition, 5:28–29

T
Talbot, Jonathan
 Astronomy tests Meade’s new Astrograph, 12:58–59
 Fornax LighTrack II mount, 2:62–63
 We test Sigma’s 20mm lens, 7:60–61
Talcott, Richard
 The Big Dipper transformed, 9:10
 A detailed look inside Cassini, 3:46–47
 E.T., phone home, 10:12
 As good as it gets, 1:14
 The historic flight of Apollo 8, 12:28–35
 Jupiter gets tipsy, 4:19
 Mercury in the evening, 3:14
 Mercury’s grand view, 11:10
 Mercury’s southern exposure, 7:10
 Red Planet delight, 12:13
 Venus at dusk, 5:17
Trusock, Tom
 Astronomy tests Celestron’s CGX mount, 3:64–65

W
Wenz, John
 Cassini probe sends its last regards, 1:13
 Comets swarm a distant star, 3:13
 The fastest pulsar in the Milky Way discovered, 1:14
 Hot Jupiter’s skies contain titanium oxide, 1:18
 Hubble spots farthest active comet, 2:12
 Our solar system receives an interstellar visitor, 3:10
 Pluto finds its place, 8:56–58
 The Red Planet revealed, 8:24–26
 Ring around the dwarf planet, 2:17
 Rosetta spots a cometary dust jet, 3:17
 Turbulence ahead, 1:12
West, Michael
 Why do galaxies align?, 5:46–51
Wilds, Richard P.
 Capture video with this low-cost camera, 5:66–67