Long, long ago, the universe looked very different than it does today. When the Big Bang was a recent memory and the first stars were forming and beginning to shine, the universe was much smaller. In this dense environment, a mysterious substance known as dark matter ran amok in infant galaxies. Scientists think that out of this rich environment, a new breed of star was born: dark stars.
Dark stars are somewhat of a misnomer — they’re not actually dark. In fact, they’re likely some of the biggest and brightest stars in our universe. Yet no one has ever seen one. These giants, powered differently than the stars we see in the night sky, may reveal a lot about the true nature of our universe — that is, if scientists can ever actually find a dark star.
Back to the beginning
Everything we see in the universe today makes up only 5 percent of what is known to be out there. The majority, about 69 percent, is dark energy — the unknown driver that scientists believe is causing the accelerating expansion of the universe. Dark energy doesn’t seem to interact with the normal type of matter our world is composed of, called baryonic matter — even gravitationally.
The remaining 26 percent of the universe is dark matter. According to some predictions, hundreds of these dark matter particles zip through your body every second. Fortunately for us, this type of matter, though it follows the laws of gravity, does not interact with the baryons our bodies are composed of. Unfortunately for researchers, this makes it extremely difficult to study. Dark matter emits no light, so it can only be probed indirectly through its gravitational fingerprints, such as the way it bends light around massive galaxies. For the most part, researchers must rely heavily on models to make informed predictions about the nature of this elusive material.
A leading theory on dark matter predicts the substance is in the form of weakly interacting massive particles — WIMPS for short. This class of particles is a natural consequence of the idea of supersymmetry, which is a part of the accepted standard model of particle physics, explaining how particles interact with each other and the fundamental forces of the universe.
Supersymmetry theory proposes that each type of particle has an identical, oppositely charged partner called an antiparticle. (Since WIMPS have no charge, they act as their own antiparticles.) When these partners — the particle and antiparticle — meet, they collide with a bang, utterly destroying one another in a shower of light, energy, and, in some cases, newly conceived lighter particles.