Given steady seeing, a 6-inch or larger scope may reveal Antares’ little buddy, Antares B. Because Antares B is a blue-white main-sequence star, it is substantially hotter than its larger red supergiant companion, Antares A. The pair sit less than 3" away from one another, which makes it difficult to pick out Antares B due to the supergiant’s overwhelming glare. Many who see it report its color as greenish, not blue-white. That’s likely due to the mixing of light from the two stars when viewed together.
Our Sun and stars up to about three times more massive will ultimately end their days by throwing off their outer layers in an expanding cloud known as a planetary nebula. Of all the planetary nebulae in Scorpius, NGC 6302 is the easiest to spot. You’ll find it 4° west of Shaula. At first glance, it looks like a small, circular glow. But at magnifications over 100x, 8-inch and larger scopes expose the complex structure that gives rise to its nickname, the Bug Nebula. Two faint extensions, one to the east and the other to the west, look like “wings.” The central star, a white dwarf, remains hidden from view due to enveloping dust.
Another interesting planetary, NGC 6337, the Cheerio Nebula, is 2° southeast of NGC 6302 and 2.5° southwest of Upsilon. It is also best examined at moderate magnifications. A narrowband or Oxygen-III filter will also help. A filtered 10-inch scope will show a faint, perfectly round ring. An unrelated star overlaps the northeastern edge, but the central star remains invisible.
If you could slice a red supergiant in half, you would find layers, or shells, of increasingly heavier elements inward toward the core, like a stellar onion. Hydrogen would form the outermost shell, followed by helium, carbon, neon, oxygen, and so on all the way to iron. As evolution continues, nuclear fusion restarts in each shell as critical temperatures and pressures are met. That is, until iron is reached.