Erupting volcanoes usually bring up magma from the upper part of Earth’s mantle, the region closer to the surface. This material is more likely to be polluted by hydrogen from the crust, which contains the same higher D/H ratios measured in the oceans today. More pristine samples lie much farther down in the mantle. Although it’s hot there, less than 20 percent of the mantle rock has melted, Peslier says. When the melted material erupts, it can have a violent effect on the solid rock.
“If [the lavas] go fast enough and brutally enough, they sometimes break off pieces of what they are traversing along the way,” Peslier says. She describes the result — called mantle xenolith, after the Greek word for “foreign rock” — as crystals of bright green olivine and black pyroxene embedded in the black lava.
If the hydrogen-rich olivine crystals were captured early enough during Earth’s formation and remained undisturbed for the planet’s 4.5 billion-year lifetime, they could reveal how much the ancient ratios of heavy and normal water shifted, if they changed at all. The tiny time capsules could provide answers to the long-standing questions regarding the source of Earth’s water.
But first, they had to be found.
Hunting primordial water
While Meech knows a great deal about water in the solar system, she wasn’t as familiar with rocks on Earth. She pulled in Hallis, then a postdoctoral student, to lead geological excavations in a hunt for those early fingerprints of normal and heavy water. Hallis was intrigued by the chance to scramble across craters in Hawaii and along the shores of Baffin Island in Canada in search of clues. Baffin is one of the few places where Earth’s deep mantle is accessible. The chain of eruptions that formed the island also created Greenland and Iceland. “The Baffin Island samples are the most pristine examples that we have of the deep mantle,” Hallis says.
Hallis also received samples collected by Don Francis, now an emeritus professor at McGill University in Montreal, from a tiny uninhabited island called Padloping, off the eastern coast of Canada and northwest of Baffin Island. According to Hallis, Francis collected the first of his samples in 1985. The isolation of Padloping Island meant that researchers had to travel there by boat and set up camp. The sheer cliffs made falling rocks plentiful, and Francis picked up the best-looking minerals from the beach. A return trip in 2004 netted even more samples. “Something I would really like to do is go back [to Padloping Island],” Hallis says. The imposing cliffs make it challenging to collect samples, but if she could obtain some from the steep overhangs, she would be able to pinpoint where and when the material rose to the surface.