Tonight's Sky
Sun
Sun
Moon
Moon
Mercury
Mercury
Venus
Venus
Mars
Mars
Jupiter
Jupiter
Saturn
Saturn

Tonight's Sky — Change location

OR

Searching...

Tonight's Sky — Select location

Tonight's Sky — Enter coordinates

° '
° '

Why do the gas giant planets have so much gravity when they do not have solid cores like the terrestrial planets? Or do they have solid cores?

Robert Hartle, Tacoma, Washington
Gas-giant-planets
The gas giant planets are made up of layers of gas and liquid that surround probable solid rocky cores. Astronomy: Roen Kelly
Anything that has mass produces a gravitational field. “Giant planets,” as their name implies, have a lot of mass, and, hence, have a big gravitational tug. It doesn’t matter if a planet’s composition is solid, liquid, or gas. The Sun is entirely hot gas, yet its gravitational pull keeps the solar system’s planets in orbit around it.

Uranus and Neptune are actually mostly “cores,” as water and rock make up 80 to 85 percent of their total mass. The hydrogen/helium atmospheres we see are just the outermost layer. We do not know the composition of Jupiter and Saturn’s cores very well, but we try to understand their interior structures by studying the complex configurations of their gravity fields. Saturn has a core of 10 to 20 Earth masses; Jupiter’s core is at most 15 Earth masses — although it might have no core at all. We can’t yet tell.
 
Some 4.5 billion years ago, when solar nebula gas still orbited the Sun in a disk, solid bodies could accrete material to form 10-Earth-mass solid protoplanets made of ice, rock, and iron. The gravity of these protoplanets pulled in tremendous amounts of gas from the nebula to make the gas giant planets we see today. From ultra-high-pressure laboratory experiments and calculations, we estimate what these cores are like now. The rock and iron would still be solid, but the ice would have melted to liquid and could be getting dredged up into the atmosphere slowly over time. — Jonathan Fortney, University of California, Santa Cruz
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT
FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter. View our Privacy Policy.

ADVERTISEMENT
ADVERTISEMENT
Apollo_RightRail
A chronicle of the first steps on the Moon, and what it took to get there.
Find us on Facebook