Consider a Sun-like star, a red giant, and a white dwarf. They all seem pretty different. But really, one star can be all three of these throughout its life. In about 5 billion years, the Sun will turn into a red giant, bloating until it swallows the Earth. Then about a billion years after that, it will expand too far and lose its outer layers, leaving just its hot, dense core behind. This core will be a white dwarf.
A lot of white dwarfs have been spotted over the years, but a
study published this week in
Monthly Notices of the Royal Astronomical Society presented the first observational evidence of a
shrinking white dwarf, which they found has been consistently contracting for the past 2 million years.
According to theory, a typical white dwarf can shrink its radius by several hundred kilometers during its first million years, but astronomers have never actually witnessed this behavior before. “For decades it has been theoretically clear that young white dwarfs are contracting,” said astrophysicist and lead author of the study, Sergei Popov, in a
press release. “Yet, that very phase of contraction has never been observed in ‘real time.’”
This is partly because many white dwarfs observed thus far are extremely old, so they finished shrinking a long time ago. But it’s also incredibly difficult for astronomers to measure miniscule changes in a white dwarf’s radius since the stellar core is both very distant and very compact. (A white dwarf roughly the mass of the Sun would only be about the size of Earth).