A cosmic bullet
To carry out the study, Bonaca and her team used data from the ESA’s Gaia space observatory, which has observed over a billion objects with unparalleled precision. Using this data, they mapped the positions and motions of stars in the stellar stream GD-1, which astronomers believe is the remains of a 70,000-solar-mass collection of old stars (called a globular cluster) that was shredded by past gravitational interactions with the Milky Way.
After noticing that GD-1 has an impact scar — a line of ejected stars — that indicates a past interaction, the researchers ran simulations to try to reproduce what they saw. After testing a variety of models, they found that the gravity of an object millions of times more massive than the Sun would do the trick.
The team naturally went searching for the object responsible. “Any massive and dense object orbiting in the halo could be the perturber,” Bonaca told Astronomy, “so a wandering supermassive black hole is definitely a possibility.” But so far, the team has failed to find any objects, black holes or otherwise, with the right trajectory and mass.
According to a
preprint of their paper, “Orbit integrations back in time show that the stream encounter could not have been caused by any known globular cluster or dwarf galaxy.” This led the team to conclude the “most plausible explanation” is that GD-1 had a past encounter with a clump of dark matter, like those expected to reside in the halos of galaxies.
Still hunting
Bonaca admits the current research is not conclusive. “However, if we can locate where the perturber is now, that would open new research directions, including searching for additional observational evidence [indicating it is dark matter].” Such evidence could take the form of other stars or gas clouds being jostled around by the dark matter’s gravity, or even gamma-rays associated with dark matter annihilations, which occur when two dark matter particles slam into and destroy each other, releasing a flash of energy.
Bonaca says her team recently obtained measurements of the motion of stars in the disrupted part of the stream. By mapping out where the stars are now and how they are moving, the team should be able to better calculate where the perturber could be now to locate it. That would tell them were on the sky to look for that additional evidence that the cosmic cannonball is indeed dark matter.