"They can keep growing as long as there is dark matter fuel," Freese told Astronomy. "We've assumed they can get up to 10 million times the mass of the Sun and 10 billion times as bright as the Sun, but we don't really know. There is no cutoff in principle."
Searching for dark stars
One of the hurdles to proving dark stars truly exist, though, is that these ironically bright objects depend on dark-matter annihilations to survive. However, such annihilations primarily occurred in the very early universe, when dark-matter particles were sharing close quarters. So, in order to spot ancient dark stars, we need telescopes capable of peering back to the extremely distant past.
Fortunately,
according to Freese, the upcoming
James Webb Space Telescope should be able to spot dark stars — as long as we know what to look for.
"They would look completely different from hot stars," Freese told Astronomy. "Dark stars are cool [17,500 °F (9,700 °C)]. So, they would look more like the Sun in terms of frequency of light, even though they're much brighter. That combination of cool and bright is hard to explain with other objects."
"It is an exciting prospect that an entirely new type of star may be discovered in these upcoming data," Freese and her colleagues wrote in a
review paper.
Seeding supermassive black holes
If researchers are able to uncover evidence for the existence of dark stars, it would change how we think about the early stages of the universe. Darks stars would swiftly become the top candidates for the first generation of stars, which formed some 200 million years after the Big Bang.
But dark stars might also explain one of the most nagging questions in cosmology: How did supermassive black holes first form?
"If a dark star of a million solar masses were found [by James Webb] from very early on, it's pretty clear that such an object would end up as a big black hole," Freese says. "Then these could merge together to make supermassive black holes. A very reasonable scenario!"