Franck Marchis of the SETI Institute tells Astronomy that the ability to tap into a network of thousands of identical eVscopes is a “game-changer” because results from standardized equipment can be combined more consistently. “You know that the telescopes react with the same sensitivity, the same quantum efficiency, the same profile of different colors,” he says. “That means we can clearly identify if there is an issue coming from the seeing, from the sky quality, or from the wind.”
Plus, instead of relying only on advanced amateurs who know how to calibrate their equipment and process their data, the science team can program the eVscope to do it automatically, allowing anyone to participate.
Filling Arecibo’s gap
Marchis hopes to compare their model of 1999 AP10 with forthcoming results from the Goldstone Solar System Radar, which also observed the asteroid this fall. But already the campaign has demonstrated the eVscope’s potential for including amateur astronomers in scientific research, he says.
Other researchers agree. “I think this is a great public engagement project that can provide useful and helpful data for asteroid research, including planetary defense,” says Anne Virkki, who heads the planetary radar team at Arecibo Observatory.
Arecibo’s 1,000-foot-wide (305 meters) radio telescope was the world’s most powerful planetary radar before it collapsed following a series of cable failures this fall. Its loss was a big blow to planetary defense efforts — NASA funded the observatory to observe near-Earth objects, mapping their shapes and surfaces.
Although comparing the eVscope to a planetary radar like Arecibo is “a bit of an apples-and oranges comparison,” says Virkki, “more data is always a plus, and having the public engaged in participating and helping is even a bigger plus.”
The crowdsourced light curve approach does have limitations. Unlike planetary radars such as Arecibo, the eVscope network struggles to detect depressions on an asteroid’s surface (e.g., impact craters). That’s because the math behind the light curve inversion approach assumes the object is entirely convex, with no low-lying regions.
Arecibo could also observe more objects, obtaining high-resolution images of 20 to 30 NEAs per year, according to Virkki. Marchis hopes that the eVscope network will map one or two NEAs annually. But still, he says, the eVscope network represents an alternative approach that can help “fill up the gap left by Arecibo.”
“Arecibo was a great telescope, but still a telescope that was built in the 1960s, when we were building these gigantic facilities to learn about the cosmos used by a few people,” Marchis says. “We are reaching a moment where we can democratize astronomy and make it accessible to a lot of people.”