Nevertheless, the idea of undetectable companion stars didn’t sit well with some astronomers. As recently as 2020, writes Leen Decin, an astronomer at KU Leuven in Belgium, a famous astrophysicist told her “You know, Leen, it all looks so fantastic, the observations are so fascinating, the current state-of-the-art models seem to do a pretty good job for interpreting the data, but in the end, shouldn’t we only believe what we can actually see?”
But over the last 10 to 15 years, the tide has steadily turned. New and innovative telescopes have revealed that some red giants are surrounded by spiral structures and accretion disks before they turn into planetary nebulae — just as expected if there were a second star pulling material off the red giant. In a couple of cases, astronomers may have even spotted the companion star itself.
Decin and her colleagues have especially relied upon the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, which came online in 2011. ALMA consists of 66 radio telescopes that work together to produce images of astronomical objects. “It gives us high spatial and spectral resolution that are important if you want to understand dynamics and velocity,” Decin says. Velocity is an important part of the puzzle for scientists to map stellar winds and accretion disks.
ALMA has seen spiral-shaped or arc-shaped structures around more than a dozen red giant stars, almost certainly a sign that matter is being shed from the red giant and spiraling toward its companion. The spirals closely match computer simulations and are impossible to explain with the old stellar-wind model. Decin reported the initial findings in 2020 in Science and expanded on them the following year in Annual Review of Astronomy and Astrophysics.
In addition, Decin’s group may have spotted the previously undetectable companions of two red giants, p1 Gruis and L2 Puppis, in ALMA images. To make sure, she needs to monitor them over a period of time to see if the newly detected objects are moving around the primary star. “If they move, I’m sure that we have companions,” says Decin. Perhaps this discovery will win over the last skeptics.
Like crime scene investigators, astronomers now have “before” and “after” snapshots of the creation of a planetary nebula. The one thing they lack is the equivalent of CCTV footage of the event itself. Is there any hope that astronomers can catch a red giant in the act of turning into a planetary nebula?
So far, computer models are the only way to “watch” the centuries-long process unfold from beginning to end. They have helped astronomers home in on one dramatic scenario, in which the companion star plunges into the primary after a prolonged period of orbiting it and losing distance due to tidal forces. As it spirals toward the red giant’s core, the companion sheds “an insane amount of gravitational energy,” says Frank. The computer models show that this hugely accelerates the process through which the star lets go of its outer layers, to just one to 10 years. If this is correct, and if astronomers knew where to look, they could witness the death of a star and birth of a planetary nebula in real time.