Thank you for registering on Astronomy.com!

We hope you enjoy these two articles that provide you with just a small sample of what Astronomy magazine has to offer.

Please remember that this copyrighted material is for your use only. It is unlawful to share or distribute this file to others in any way, including e-mailing it, posting it online, or sharing paper copies with others.

If you have suggestions or comments on this product, please contact us at pdf@astronomy.com.

Sincerely,

The staff of Astronomy magazine

TROUBLESHOOTING GUIDE

Please note: Packages are color intensive. To save color ink in your printer, change your printer setting to grayscale.

SAVING PACKAGE
Save the package when you download the PDF. Click on the computer disk icon in Adobe Acrobat, or go to File, Save.

MY PRINTER WON’T PRINT THE TEXT CORRECTLY
Close all other programs/applications and print directly out of the Acrobat Reader program, not your Web browser. Printing problems are caused by not enough free system memory.

PAGES ARE NOT PRINTING FULL SIZE
Set your printer to print 100% and make sure “print to fit” is not checked under printer setup or printer options.
Space, we all know, is the final frontier. But given our current technological state, it might stay that way for some time. Unlike climbing the next mountain or sailing the next sea, exploring the next planet — let alone the next star system — will surely take humanity quite a while. The warp drives and wormholes of science fiction make for interesting stories, but in the real world the immensity of space appears unconquerable.

But does it have to be that way? It's easy to shrug off the convenient but impossible propulsion systems of fictional starships, but let's not be too quick to discount our real achievements. In just over 100 years, our species has learned how to fly, how to launch into space, and how to begin working and living there. If we put our minds to it — if humanity prioritizes interstellar travel above all else — what would it take for us to reach Alpha (α) Centauri, the closest star system outside our own?

First steps
After millions of years confined to the ground, humanity first left our planet in 1961, more than 50 years ago. Starting just eight years later, a dozen men trod on the surface of another world, the Moon, for the first time in history. We were, briefly, a multi-world species. Since 1972, the closest mankind has gotten to the stars is low Earth orbit.

We've done much better with our unmanned probes. When the New Horizons mission explores Pluto and its surroundings in 2015, it will complete our tour of the solar system. All the major planets and the biggest moons (along with the Sun and certain asteroids and comets) have already had at least one robotic probe study them in detail. No one has set foot on Saturn's moons, but scientists can explore them virtually through these missions and learn almost as much.

We've done all this despite the daunting distances between planets. In many cases, the key is simply waiting. Although the 2.97-billion-mile (4.78-billion-kilometer) trip the New Horizons probe has to take to reach Pluto is a long one, it'll get there given enough time — in this case, about nine and a half years. Of course, that's still a long wait, and this happens to be the fastest spacecraft ever launched, speeding away from Earth at some 35,800 mph (57,600 km/h).

Other probes have gone even farther, but it's taken them decades to do so. Currently, the Voyager 1 spacecraft is the farthest man-made object, an achievement earned from nearly 35 years of constant movement.

Bill Andrews is an associate editor of Astronomy. He's always enjoyed pondering the various fictional and nonfictional forms of interstellar travel.
travel to

Traveling to another star has long been a sci-fi dream for humans, but such a trip may be closer than we think.
And despite passing Pluto’s orbit, the probe’s current distance of more than 11 billion miles (18 billion km) from the Sun remains firmly within the solar system, which extends out to the Oort Cloud some 4.6 trillion miles (7.5 trillion km) away.

Given enough time, the probe will certainly leave our neck of the galaxy and begin an interstellar trip. That’s when the real journey begins.

The nearest destination
The closest star to the Sun is a red dwarf called Proxima Centauri, which lies 4.22 light-years away — 24.7 trillion miles (39.9 trillion km). This dim star is likely a member of the Alpha Centauri system, which includes the binary stars Alpha Centauri A and B, themselves 4.44 light-years away.

To reach distances like that would take Voyager 1 a lot longer than a few decades. Even with the speed boosts it got from slingshotting around the most massive planets, the probe’s present velocity is just 37,100 mph (59,700 km/h). Assuming Voyager was headed straight for the system, it’d take about 76,000 years to arrive. For context, that’s longer than any known civilization has stood and almost half as long as Homo sapiens have been around.

And that’s just to the nearest star! It has no known planets, and even if it did their habitability would be questionable at best because of Proxima Centauri’s dimness and other unfavorable characteristics. The nearest known “interesting” stars, with possibly Earth-like planets in orbit, are many times farther away. But Proxima’s proximity to us still makes it a useful destination: It’s far enough away to require a new mindset for space travel, but still close enough to be conceivably reachable.

So, we already know that a decades-old probe could, technically, reach the Alpha Centauri system if we’re willing to wait long enough and it continues functioning. But could we do any better with today’s technology? And, more importantly, could humans survive the trip?

Getting there
The best answer right now: perhaps. “Using the technology available to mankind today, yes, I’d say a manned interstellar spaceship is possible,” says Ian O’Neill, founder of Astroengine.com, Space Science Producer for Discovery News, and the holder of a Ph.D. in solar physics. “But is a mission to another star practical? Probably not.”

Let’s start with a familiar space travel technology, the space shuttle. Its main engine used a liquid oxygen/liquid hydrogen mix with an energy density of approximately 100 megajoules per kilogram; relatively speaking, that’s not much energy (about a tenth of what a refrigerator uses in a year).

“To fly to Alpha Centauri in a shuttle in 100 years would require fuel tanks 55 times larger than the mass of the observable universe,” says Andreas Tziolas of the University of Alaska Anchorage, and also a vice president at Icarus Interstellar, a nonprofit research organization aiming to create a realistic unmanned interstellar probe. “For a reaction engine, which carries its fuel, heats it up, and expels it for propulsion, we would want to use something with very high energy density.”

Nuclear power, specifically the fission (or splitting) of uranium and plutonium nuclei, provides much more energy, about 100 terajoules/kg (TJ/kg), or a million times better than the shuttle’s system. This would require hundreds of thousands of tons of gas (most likely hydrogen) to fuel the reactions. And due to the extremely high temperatures the components would be exposed to — on the order of hundreds of thousands of degrees Celsius — this technology requires more-advanced materials or ingenious cooling systems than we currently have. Nonetheless, Tziolas says, “As a power
source, nuclear fission is very promising, especially for interplanetary transits.”

Even more promising, and problematic, is a nuclear fusion-powered propulsion method, which combines light atomic nuclei and can reach energy densities of 300 TJ/kg. Tziolas says deuterium-helium-3 fusion was “the reaction of choice” for Project Daedalus, a 1970s study that first showed that interstellar flight is possible with current or near-future technologies. (Project Icarus is a follow-up to Project Daedalus.) Unfortunately, Tziolas says a big problem is “the extreme scarcity of helium-3 on Earth, which would require us to mine the atmospheres of gas giants to accumulate sufficient quantities.”

O’Neill also points out that fusion propulsion may be too violent for any passengers on such a ship. “Humans are soft and squishy, so accelerating an interstellar craft to huge speeds rapidly may be detrimental to the health of those on board.” And then there’s the issue of radiation (also a problem for fission-based propulsion), which would require significant shielding. These all amount to engineering issues, though, meaning they’re likely to be overcome sooner rather than later, making fusion the propulsion method of choice.

Other technologies, such as solar sails and matter-antimatter reactions, also have their merits, Tziolas says, but they all have fundamental physics problems that would need to be solved first.

Surviving the trip

Having thus established that humans could get to the Alpha Centauri system, the next problem is getting them there in one piece. “In the particular case of a crewed interstellar voyage, the trip time is, of course, the primary design concern,” says Tziolas. “The longer the voyage, the more resources the crew would occupy, making the spacecraft heavier, which makes it require more fuel, and thus the journey takes even longer.” It’s a perfect catch-22.

While we’ve already calculated an upper boundary on the possible trip time — some 76,000 years — under ideal circumstances, that figure could decrease significantly. “Some estimates indicate a fusion-propelled starship may reach 10 percent the speed of light,” says O’Neill. “In this case, the 4.4 light-year trip to Alpha Centauri could be accomplished within 50 years.” (Tziolas specifically suggests for the mission a ship with a futuristic-sounding “optimized antimatter-catalyzed fusion scheme, accelerating and decelerating at full thrust.”)

It’s an optimistic figure, to be sure, but a possible one using current physics and near-future technology. It would still take five decades, but, O’Neill says, “Crew members that started the journey may live out their lives to see an alien world.”

A long-duration journey like this would be less of a traditional space mission and more like a grand social experiment, according to O’Neill. To begin with, the “crew” should be an entire community to better handle and adapt to the rigors of a long trip. “The starship would need to be a self-contained town,” he says. “Our interstellar travelers may have more in common with the early settlers of America than modern astronauts — they’d be living out an existence always looking toward a new land while trying to survive.”

Because of researchers’ years spent perfecting life off-Earth, they would be able to provide the travelers a moderately comfortable ride. Rotating cylinders could provide artificial gravity. Growing zero-g foodstuffs is already possible. Artificial intelligence could handle simple tasks like automated repairs and minor course corrections. A thick layer of ultra-light graphene, first suggested by Adam Crowd for Project Icarus, could protect the ship from collisions with the sparse gas and dust in
An astronomical price

The cost of sending humans to another star might seem staggering at first, but the tremendous sum wouldn’t be an unheard-of expense. Further, the myriad spinoff technologies that such an endeavor would certainly provide could help the project pay for itself.

<table>
<thead>
<tr>
<th>Program</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Shuttle Program</td>
<td>$194.6 billion</td>
</tr>
<tr>
<td>U.S. Interstate Highway System</td>
<td>$466.0 billion</td>
</tr>
<tr>
<td>Outstanding U.S. student loan debt</td>
<td>$955.8 billion</td>
</tr>
<tr>
<td>Project Daedalus in 1978</td>
<td>$1 trillion</td>
</tr>
<tr>
<td>Global spending on consumer technology products</td>
<td>$1.04 trillion</td>
</tr>
<tr>
<td>U.S. nuclear arms spending during Cold War</td>
<td>$2.8 trillion</td>
</tr>
<tr>
<td>Project Daedalus in 2011 dollars</td>
<td>$3.45 trillion</td>
</tr>
<tr>
<td>U.S. spending on World War II</td>
<td>$4.1 trillion</td>
</tr>
<tr>
<td>U.S. gross domestic product (2011)</td>
<td>$15.1 trillion</td>
</tr>
<tr>
<td>U.S. oil reserves (at November 2011 prices)</td>
<td>$20.6 trillion</td>
</tr>
<tr>
<td>Total U.S. debt (2011)</td>
<td>$36.6 trillion</td>
</tr>
</tbody>
</table>

Communications problem

Communications with Earth prove a bigger problem, though, with no clear solution in sight. Tziolas suggests deploying “powered relay stations along the way” to maintain signal strength over the vast distances. But, even then, it would take years for any messages to travel such large expanses. “What would be the point of two-year-old messages being sent from Earth to a starship that is a couple of decades into its mission?” asks O’Neill.

The communications issue may feed into a problem that could be greater for such a project than any of these technical matters: the sense of isolation. “It’s hard to imagine how the interstellar colony will identify itself,” says O’Neill, especially for longer voyages. What relevance does Earth have to people born inside a huge spacecraft, with no attachment to their ancestors’ birthplace?

“The real wild card of a long-duration mission would be social rather than technological,” says O’Neill. Will the crew provide a large enough gene pool to keep future generations healthy? Is there a possibility of social unrest? What if the travelers change their mind about the mission after 20 years? And, as O’Neill points out, “The ethics behind such a trip would be iffy at best.” How fair is it for those born on board, who have no choice but to carry on the “mission” begun by their parents?

How far is the nearest star?

<table>
<thead>
<tr>
<th>Planet</th>
<th>Distance (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>1</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5.2</td>
</tr>
<tr>
<td>Neptune</td>
<td>30</td>
</tr>
<tr>
<td>Voyager 1</td>
<td>120</td>
</tr>
<tr>
<td>Beginning of Oort Cloud</td>
<td>2,000 AU</td>
</tr>
<tr>
<td>End of Oort Cloud</td>
<td>50,000 AU</td>
</tr>
<tr>
<td>KUIPER BELT</td>
<td></td>
</tr>
<tr>
<td>Beginning</td>
<td></td>
</tr>
<tr>
<td>Neptunian</td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td></td>
</tr>
</tbody>
</table>

Is the price right?

O’Neill pegs the price tag of such an endeavor at “gazillions of dollars.” In other words, he has no idea. Tziolas points out that the Daedalus team, in 1978, “estimated the cost of an interstellar mission to be on the order of $1 trillion. Some say that estimate was extremely conservative.” Adjusted for inflation, that’s $3.45 trillion in 2011, about as exact a current figure as he or anyone else can determine. No matter what, an interstellar trip wouldn’t be cheap.

The reason for the astronomical cost is that building the ship requires not just enormous resources and expensive technologies, but also the infrastructure necessary to combine them. “The energy requirements for a starship to travel to a nearby star...
Interstellar tools

To safely transport human beings to another star system, a ship faces several physical requirements. Not all of these technologies currently exist, but we’re close enough to developing them to keep this a currently viable design. Such a ship might be able to travel the 4.4 light-years to our nearest star system in a matter of decades.

Interstellar tools

Fusion propulsion system
Strong shielding for nuclear radiation
Communications relay stations would deploy periodically
Thick graphene shielding protects against interstellar medium
Rotating sections provide artificial gravity
Artificial intelligence handle routine upkeep and simple tasks
Working sustainable ecosystem provides renewable food, drink
Huge stores of supplies
Smaller fusion braking system

Enormous scale provides sufficient resources for an entire community

Traveling 4.22 light-years, the distance to the nearest star, wouldn’t be easy. Still, the dim red dwarf Proxima Centauri presents a useful hypothetical destination for thinking about the challenges that would accompany humanity’s attempts at interstellar travel. Astronomy: Roen Kelly

OORT CLOUD

Astronomical Unit (AU) = 92,956,000 miles
149,598,000 kilometers

Proxima Centauri
266,000 AU
Alpha Centauri A
279,000 AU

Voyager 1
120 AU

would be 100 times the energy output of our entire planet,” O’Neill says. The costs would quickly add up.

But perhaps the initiative could pay for itself. "If the thousands of technologies derived from interstellar spacecraft research are patented, traded, licensed, and commercialized, then an entire industry of technologies will emerge," says Tziolas. Fusion systems could power the world cheaply and cleanly, advanced-materials research could have myriad commercial applications, and new scientific fields (such as interstellar engineering) could provide a new avenue for understanding the universe.

Then there’s the sheer economic benefits. “The technology-induced increase in 1975 on the Gross National Product was $7 for each $1 on research and development,” says Tziolas. A billion-dollar investment resulted in 20,000 jobs back then, with an increase in manufacturing output on the order of $150 billion. Today’s estimates put it closer to $40 back on every $1. “Any endeavor which can even imply this order of jobs and profit should be on any politician’s roadmap.”

Will it happen?

So, in the end, what’s the verdict? If we make it a priority, could our species reach another star system? Right now, it doesn’t seem likely. “Perhaps such a mission will be possible in the distant future, but using current technologies to push mankind to the stars, although feasible, would be very slow and laborious,” says O’Neill. “Sadly, I don’t think a manned interstellar mission would become a reality until we make a breakthrough in propulsion technology.”

And that’s assuming fairly unlikely levels of public and governmental support for the idea. After all, we currently have the technology, but not the will, to colonize much of the solar system. “The main reasons why we aren’t currently an interplanetary race,” says O’Neill, “are purely political and financial — mostly political.” It would simply be too hard to justify the costs of taking on these goals right now.

But there’s always the chance that those attitudes could change. Should some sort of catastrophe strike our planet, the value of knowing how to reach other worlds would immediately skyrocket. For Tziolas, this possibility should be enough to motivate us now. “Consider only how much care we take to secure data on our computers,” he says. “The very first thing we do is make a backup. A similar argument can be made here.”

So whether it takes 76,000 years or 50, the possibility of traveling to another star is closer than ever before. And given another 100 years or so, who knows? As Tziolas says, “Through reaching for the stars, humanity will incite a new era of thought and capabilities with potential to transform our culture and technology, heal the Earth, and enrich the human experience.” Whether or not we ever make the trip, it seems at least a discussion worth having.

Learn more about Project Icarus at www.Astronomy.com/toc.
During the wee morning hours of a Canadian winter day in 1958, my parents heard again a mysterious sound on the roof. Eventually, my dad went to check what was going on. Finding me on the second-story fire escape, he asked, “What are you doing, Wally?” I answered, “Dad, I enjoy looking at the stars! Don’t you?”

My dad didn’t know what to make of the whole situation, but my parents soon discovered that their son had a strong interest in the stars and planets. A few years later, with paper route money, I purchased a camera at a pawn shop and began to show my parents and six brothers and sisters — who all thought I was “some kind of nut” — photos of the things I was seeing in the night sky while they slept. My equipment was pretty basic: a 35mm camera, standard 50mm lens, and a tripod. I’d been taking exposures of about 30 seconds.

Today, many decades later, I still use a 35mm camera (a Canon 5D DSLR) with a tripod, slightly shorter exposure times, and no lens with a focal length longer than 50mm. But now, amazingly, my photos are for sale in the gift shops at Palomar Observatory in California, the Keck Observatory on Hawaii’s Mauna Kea, Kitt Peak National Observatory in Arizona, and throughout the Western national parks. They’ve appeared in publications like Astronomy, National Geographic, and TIME magazine, as well as online at NASA’s Astronomy Picture of the Day. For 10 years now, taking star photos has gone from being my lifetime hobby to granting me a career as a “professional amateur astronomer.”

Landscape love

From the onset, I always liked the idea of capturing both the night sky and the terrestrial landscape in a single shot. This method was just a simple extension of how I naturally saw the night sky with my unaided eyes. We don’t see the Big Dipper in the sky by itself; we see it over the neighbor’s house or rising above a lake. This technique, self-taught by countless amateur astronomers the
The Milky Way stretches from the Southern Cross (at right) to the Northern Cross in this shot from Hawaii’s Mauna Kea.

Orion the Hunter rises over Utah’s famous Rainbow Bridge National Monument on Lake Powell (arch lit by flashlight).
Lessons learned

Over the years, I’ve learned a thing or two about landscape astrophotography. Here are a few tips that you might find helpful, though you should never be afraid to experiment and discover for yourself what works best in a particular situation.

- Location, location, location. If you want to take beautiful photos, you must go to beautiful places. Staying home and shooting the stars between the telephone wires in your backyard won’t get your photos into TIME magazine or a national park’s gift shop.

- Take care in composing the shot. Capture interesting features in both the night sky and on the ground. That way you get a double win.

- It might be easier than you think. Sometimes it all comes down to having the guts to get out there and do whatever it takes to get that one-of-a-kind shot. Today’s digital cameras are light-years ahead of anything offered just a short time ago, and it’s possible to do today in 10 minutes what took me 10 years to learn.

- Know your equipment. All of today’s cameras have a zillion settings in auto mode, but only four settings in manual mode: exposure, f/stop, ISO, and focus. Start by setting your camera to manual mode and trying a 30-second tripod-mounted exposure. If that doesn’t work, experiment with different times until you get pinpoint stars. Use the widest f/stop to get the most stars, but if they look like seagulls, cut back the f/stop until they appear sharp again. An ISO of 1600 works well on most cameras, but if it doesn’t on yours, work to find your camera’s sweet spot. The proper focus is easiest of all to determine: The stars are more than 200 feet (60 meters) away, so just use the infinity setting.

- Learn the essentials of photographic techniques. To summarize: For a film camera, try something like

> From the onset, I always liked the idea of capturing both the night sky and the terrestrial landscape in a single shot.

Mars shines over a rare moonbow from Hawaii’s Haleakala Crater.

World over, is now officially known as landscape astrophotography.

After my dad moved the family to Southern California in 1965, my night sky easy-access viewing was gone. But despite living in the bright Los Angeles area, I soon discovered the beauty of the local deserts, along with the value of nearby national parks (such as Joshua Tree and the Mojave National Preserve).

As filmmaker and historian Ken Burns says, our country’s national parks are “America’s gift to itself.” This is particularly true for amateur astronomers, as the parks, especially the ones in the West, offer unparalleled beauty and pristine dark night skies. The combination of heavenly and earthly delights is unbeat-able for landscape astrophotography.

Safety first

Doing what I do is rewarding and fun, but it’s not always easy or safe — kind of like the icy rooftop night-sky...
Starkweather Lake in the Mammoth Lakes region of California’s Eastern Sierra National Preserve reflects Jupiter and the stars of the Milky Way.

The Milky Way looms over Palomar Observatory in California. Here, the landscape is lit by surrounding cities hidden behind clouds.

Old Faithful erupts in Wyoming’s Yellowstone National Park (illuminated by local hotel parking lights).

Sequoia National Park in California boasts a view featuring Venus, Orion, and their reflections in Hume Lake.
viewing that my dad had to put a stop to. In order to photograph national park landmarks at night, I need to actually hike the parks at night, usually alone. (After all, who would be crazy enough to join me as I drive 500 miles [800 kilometers] to one location, shoot all night, and then go 300 miles [500km] to the next location?)

Folks say I should write a book about my nighttime close encounters, which include bears, snakes, large cats, small cats, skunks, porcupines, bugs, tarantulas, bears, unknown creatures walking in the shallow water toward me, green eyes looking at me from the darkness, and did I mention bears? Add in the fun of getting lost about a

Lighting is critical in any good photograph. If you want your foreground subject to be visible and not appear as a silhouette, then you must figure out a way to light it. Unless the composition features nearby city lights (as in my Palomar Observatory picture at the top of page 55), you should get your shooting schedule to coincide with a crescent Moon, so it can light up your foreground (as in my Devils Tower photo at right). One approach I use is illuminating close foreground objects like rocks or hills with a flashlight while taking the star shot (as in my Rainbow Bridge shot at the bottom of page 53).

Embrace the power of panorama. Perhaps the most powerful tip I can offer is to transform your 12-megapixel 35mm camera into a 100-megapixel tool simply by shooting a panoramic sequence of side-by-side shots. Each one should include both the sky and land as you cover the entire horizon before you. Then, you can stitch the individual shots together using digital panoramic software.

Above all else, have fun! No one is born a perfect photographer, so just go out and capture whatever you’re most passionate about. I have discovered that I am really good at going to great lengths to be in the middle of nowhere in the middle of the night with no one else around. Whether it’s on an icy rooftop or in a national park, I see it as my mission to show others the beauty I find there. — W. P.

Lessons learned

— Continued from page 54

Fuji 800 film, with a 30-second exposure, as near to f/2 as possible, and a 50mm, 35mm, or 24mm lens (no zoom lenses, which are generally not fast enough). This will record every star visible to the unaided eye. I left my film camera behind in the past century and now use a digital camera, setting the ISO to 1600, the f/stop to f/2.2, and taking a 25-second exposure through a 24mm lens or a 20-second exposure with a 35mm lens.

A monster Geminid meteor streaks over the Mojave Desert in California.

A monster Geminid meteor streaks over the Mojave Desert in California.

Devils Tower National Monument in Wyoming, lit by moonlight, stands before the Milky Way.
zillion times, and it’s clear some nights will be a little bit more exciting than others.

My most unforgettable experience was on a shoot at one of the darkest sites on Earth, imaging the stars with my associate Babak Sedehi over the huge Moai stone statues on Chile’s Rapa Nui (Easter Island). It was just past midnight, and I had two cameras going; I manually took close-ups of the statues with one and had the other automatically taking 30-second shots of the whole area from about 50 yards off. Suddenly, out of the distant darkness, we heard something shouting, “Furo! Furo! Furo!” We looked up to see a frightful, tattooed, nearly naked figure walking toward us throwing stuff.

We didn’t know what he was saying, but Babak got the message loud and clear, and he screamed at me, “Run! Wally, run!” Babak ran straight for the car, which was about 300 yards away, but I had to grab all of my scattered gear. I fell once but managed to keep going as our assailant’s projectiles landed nearby. Babak had the car running (he was in full getaway mode) and swung the door open for me as I arrived. But, because I was carrying two camera tripods with six legs going every which way, I had trouble getting in.

Finally, I forced my way through. Unfortunately, a tripod leg kept the door open, and I almost flew out as Babak rounded the first corner. Both of us were scared out of our wits until the bed and breakfast manager calmly told us, “Oh, that’s Fetu. He’s the assigned security guard out there!”

Despite living in the bright Los Angeles area, I soon discovered the beauty of the nearby deserts.
Put your eyes to the sky with ASTRONOMY MAGAZINE

How to view May's unusual SOLAR ECLIPSE p. 48

WHAT HAPPENS WHEN WE DETECT ALIEN LIFE? The inside story from Seth Shostak, the man who will know first p. 24

AND MORE!
Inside nature's four fundamental forces p. 44
Explore 10 spring galaxies p. 50
Astronomy tests Coronado's SolarMax II 60 scope p. 60

WHAT HAPPENS WHEN WE DETECT ALIEN LIFE? The inside story from Seth Shostak, the man who will know first p. 24

Subscribe to Astronomy magazine and turn a new interest into a lifelong hobby. You'll get expert tips, explanations, and discoveries with every issue, turning you from a novice stargazer to a seasoned astronomer.

Only the sky is the limit!

With a subscription to ASTRONOMY MAGAZINE, you'll receive UNLIMITED access to PREMIUM content on ASTRONOMY.COM such as:

EQUIPMENT REVIEW ARCHIVE — Expert analysis of 200+ telescopes, binoculars, cameras and more!

STARDOME PLUS — Your interactive guide for locating stars, planets, asteroids, and more!

STAR ATLAS — 24 zoomable star charts show 45,000 stars and 800 deep-sky objects!

THE SKY THIS MONTH — Your road map to each month’s observable celestial events!

ASK ASTRO — Got questions about the universe? We have the answers!

WEB EXTRAS — Access articles, interviews, videos, and images that enhance and extend magazine stories.

SUBSCRIBE TODAY!

Order online at www.Astronomy.com/promo and enter code 1K28A or call 1-800-533-6644 Monday-Friday, 8:30 a.m.-4:30 p.m. Central Time. Outside the U.S. and Canada, call 262-796-8776 x661.